Владимир Сидорович о докладе IRENA «Перспективы возобновляемой энергии в Российской Федерации. IRENA: Перспективы ВИЭ в России

Новости о рекордах в области использования ВИЭ не сходят с новостных лент в последние несколько лет. По информации Международного агентства по возобновляемой энергетике (IRENA), в период 2013-2015 годов доля ВИЭ в новых мощностях в электроэнергетике уже составляет 60%. Ожидается, что еще до 2030 года возобновляемые сместят уголь на второе место и выйдут в лидеры в балансе генерации электроэнергии (по прогнозу МЭА, треть объемов электроэнергии к этому году будет производиться с помощью ВИЭ). С учетом динамики ввода новых мощностей эта цифра выглядит не слишком фантастической - в 2014 году доля возобновляемых в мировом производстве электроэнергии составляла 22,6%, а в 2015 году - 23,7%.

Однако под общим термином ВИЭ скрываются очень разные источники энергии. С одной стороны, это давно и успешно эксплуатируемая крупная гидроэнергетика, а с другой - относительно новые виды - такие как солнечная энергетика, ветер, геотермальные источники и даже совсем экзотическая энергия волн океана. Доля гидроэнергетики в выработке электроэнергии в мире остается стабильной - 18,1% в 1990 году, 16,4% в 2014 году и примерно такая же цифра в прогнозе на 2030 год. Двигателем стремительного роста ВИЭ за последние 25 лет стали именно «новые» виды энергии (прежде всего, солнечная и ветроэнергетика) - их доля увеличилась с 1,5% в 1990 году до 6,3% в 2014 году и предположительно догонит гидроэнергетику в 2030 году, достигнув 16,3%.

Несмотря на такие бурные темпы развития ВИЭ, остается довольно много скептиков, сомневающихся в устойчивости этого тренда. Например, Пер Виммер, в прошлом сотрудник инвестиционного банка Goldman Sachs, а ныне основатель и руководитель собственной инвестиционно-консалтинговой компании Wimmer Financial LLP, считает, что ВИЭ - это «зеленый пузырь», аналогичный пузырю доткомов 2000 года и ипотечному кризису в США 2007-2008 годов. Интересно, что Пер Виммер - гражданин Дании, страны, которая уже давно является лидером в секторе ветроэнергетики (в 2015 году на датских ветряных электростанциях было произведено 42% потребленной в стране электроэнергии) и стремится стать самым «зеленым» государством если не в мире, то уж точно в Европе. Дания планирует полностью отказаться от использования ископаемых источников топлива к 2050 году.

Основной аргумент Виммера состоит в том, что энергия ВИЭ является коммерчески неконкурентоспособной, а проекты с ее использованием - неустойчивыми в долгосрочной перспективе. То есть «зеленая» энергия - слишком дорогая по сравнению с традиционной, и развивается она только благодаря государственной поддержке. Высокая доля долгового финансирования в проектах ВИЭ (до 80%) и его растущая стоимость приведут, по мнению эксперта, либо к банкротству компаний, реализующих проекты в сфере «зеленой» энергетики, либо к необходимости выделения все большего объема средств государственной поддержки для удержания их на плаву. Однако Пер Виммер не отрицает, что ВИЭ должны играть свою роль в энергообеспечении планеты, но государственную поддержку предлагает оказывать только тем технологиям, которые имеют шанс стать коммерчески рентабельными в течение следующих 7-10 лет.

Сомнения Виммера не беспочвенны. Наверное, один из самых драматичных примеров - это компания SunEdison, которая в апреле 2016 года подала заявление о банкротстве. До этого момента SunEdison была одной из самых быстро растущих американских компаний в области ВИЭ, стоимость которой летом 2015 года оценивалась в $10 млрд. Только за три года, предшествующих банкротству, компания инвестировала в новые приобретения $18 млрд, а всего было привлечено $24 млрд акционерного и заемного капитала.

Перелом в отношении инвесторов наступил, когда SunEdison неудачно попыталась поглотить за $2,2 млрд компанию Vivint Solar Inc, занимающуюся установкой солнечных панелей на кровли домов, что совпало со снижением цен на нефть. В результате цена акций SunEdison упала с пиковых значений (более $33 в 2015 году) до 34 центов в момент подачи заявления о банкротстве. История SunEdison - тревожный, но не однозначный сигнал для индустрии. Согласно оценкам аналитиков, проекты у компании были «хорошие», а причина банкротства была в слишком быстром росте и больших долгах.

Однако динамика индекса MAC Global Solar Energy Stock Index (индекс, который отслеживает изменение котировок акций более 20 публичных компаний, работающих в секторе солнечной энергетики со штаб-квартирами в США, Европе и Азии) за последние четыре года также не внушает оптимизма.

Вопрос о субсидиях тоже выглядит неоднозначным. С одной стороны, объем государственной поддержки ВИЭ в мире растет с каждым годом (в 2015 году, по оценкам МЭА, он приблизился к $150 млрд, 120 из которых приходились на сектор электроэнергетики, без учета гидроэнергетики). С другой - ископаемые источники энергии также субсидируются государствами, причем в значительно больших масштабах. В 2015 году объем таких субсидий оценивался IEA в $325 млрд, а в 2014 году - в $500 млрд. При этом эффективность субсидирования технологий ВИЭ постепенно повышается (субсидии в 2015 году выросли на 6%, а объемы новой установленной мощности - на 8%).

Также растет, причем стремительно, конкурентоспособность ВИЭ за счет снижения стоимости производства электроэнергии. Для сравнения себестоимости различных источников электроэнергии часто используется показатель LCOE (levelized cost of electricity - полная приведенная стоимость электроэнергии), при расчете которого учитываются все затраты как инвестиционного, так и операционного характера на полном жизненном цикле электростанции соответствующего типа. По данным компании Lazard, которая ежегодно выпускает оценки LCOE для разных видов топлива, для ветра этот показатель за последние 7 лет снизился на 66%, а для солнца - на 85%.

При этом нижние уровни диапазона оценки LCOE для ветровых и солнечных электростанций промышленного масштаба уже сопоставимы или даже ниже значений этого параметра для газа и угля. Несмотря на то, что методология LCOE не позволяет учесть все системные эффекты и потребности в дополнительных инвестициях (сети, базовые резервные мощности и другое), это означает, что проекты в ветро- и солнечной энергетике становятся конкурентоспособны по сравнению с традиционными видами топлива и без государственной поддержки.

Еще одной характеристикой этого тренда является темп снижения цен, заявляемых энергокомпаниями на аукционах по покупке крупных объемов электроэнергии посредством PPA (power purchase agreement - соглашение о поставках электроэнергии). Например, очередной рекорд для солнечной энергетики в размере 2,42 цента за кв/ч был поставлен консорциумом, состоящим из китайского производителя панелей JinkoSolar и японского девелопера Marubeni, в 2016 году в Объединенных Арабских Эмиратах. Не далее как в 2014 году самый низкий бид на подобных аукционах стоил выше 6 центов за кв/ч.

В заключение следует еще раз вспомнить о ключевых причинах бурного развития ВИЭ в мире. Основной фактор, стимулирующий развитие возобновляемых - это все-таки декарбонизация, то есть принятие мер по сокращению выбросов парниковых газов для борьбы с глобальным потеплением. На это было нацелено принятое 12 декабря 2015 года и вступившее в силу 4 ноября 2016 года Парижское соглашение об изменении климата.

Среди других выгод перехода на ВИЭ можно отметить улучшение экологической обстановки, снабжение энергодефицитных и удаленных районов, а также развитие технологий и появление новых рабочих мест. За последние несколько лет использование ВИЭ стимулировало создание одной из самых высокотехнологичных отраслей промышленности в мире. Объем инвестиций в эту отрасль в 2015 году оценивался в $288 млрд США. 70% всех инвестиций в генерацию электроэнергии было сделано в секторе возобновляемых источников энергии. В данном секторе (не считая гидроэнергетику) в мире занято более 8 млн человек (например, в Китае их число составляет 3,5 млн).

Сегодня развитие возобновляемых источников энергии нужно рассматривать не в изоляции, а как часть более широкого процесса Energy Transition - «энергетического перехода», долгосрочного изменения структуры энергетических систем. Этот процесс характеризуется и другими важными изменениями, многие из которых усиливают «зеленую» энергетику, повышая ее шансы на успех. Одним из таких изменений является развитие технологий хранения энергии. Для зависящих от погодных условий и времени суток ВИЭ появление подобных коммерчески привлекательных технологий, очевидно, станет большим подспорьем. Мировой процесс развития новой энергетики является необратимым, но четкий ответ на вопрос о его месте и роли в российском ТЭК еще предстоит сформулировать. Главное сейчас: не упустить окно возможностей - ставки в этой гонке довольно высоки.

  • Сланцевый газ, потепление климата, наводнения, засухи, сокращение лесных массивов
  • В мировой электроэнергетике за последние 15-20 лет произошла масштабная революция – возобновляемая энергетика, особенно солнечная и ветроэнергетика.
  • Существует вероятность техногенной катастрофы (Фукусима).
  • Научно-технологическая революция в нефтедобывающем комплексе (за последние 10-15 лет) – сланцевый газ, сланцевая нефть. Сланцевый газ поменял всю картину США: в 2005 году в США пик импорта нефти, к 2020 году – 2-е место в экспортных поставках сланцевого газа.
  • Увеличение добычи труднодоступной нефти, трудноизвлекаемых запасов нефти.
  • Сбои/срывы поставок: арабская «весна», Ливия, Судан (и раньше такое было, но объемы поставок восстанавливались десятилетие).

Стратегические направления:

  • Повышение энергоэффективности и энергоёмкости экономики. (Энергоёмкость снижается не слишком высокими темпами, в то время как энергоэффективность растёт достаточно быстро. Снижение СО 2 вносит большой вклад в повышение энергоэффективности). Нужна более эффективная транспортировка.
  • Снижение выбросов парниковых газов (за счет снижения доли угля хотя бы на 1% в мировом энергобалансе на газ и за счет роста доли ВИЭ — возобновляемых источников энергии).
  • Уменьшение ресурсоёмкости производства.

Китай

  • Правительство наконец-то осознало угрозу загрязнения природы.
  • Самые большие инвестиции в ВИЭ.
  • Масштабный кризис в солнечной энергетике. Китай выстроил мощности по солнечной энергетике по всему технологическому циклу, начиная от кремния и заканчивая панелями. Введённый объем мощности в Китае в 2 раза больше, чем весь объем мирового рынка. В результате полностью рухнули рынки всех крупнейших солнечных компаний, обанкротились компании по производству поликремния.
  • Реакция мира – реальная торговая война для китайского оборудования для солнечной энергетики: США ввели запретительные пошлины на такое оборудование и Европа на грани ввода запретительных пошлин.

Проблемы развития ВИЭ

Экономика. ВИЭ – это дорогое удовольствие, которое приходится субсидировать. Парадокс: ввод огромных новых мощностей от ВИЭ, но ни солнце, ни ветроэнергетика пока экономически нерентабельны, существуют только за счет дотаций. Чем выше темпы роста, тем значительнее нужны дотации. Из-за разного уровня субсидирования ВИЭ в разных странах на разные источники большой диспаритет цен, что является большой проблемой (цены на нефть глобальные и ±10% в мире, в то время как цена на газ в Европе в 3 раза выше, чем в США и в России, а в Японии ещё на 40% выше, чем в Европе). Но недавно в большинстве стран ЕС снизили или отменили дотации на ВИЭ.

Сегодня производство кремния или любого полупроводникового металла экологически вредно, какие бы способы очистки не использовались. Любое полупроводниковое производство заражает окружающую землю, воду. И расширение производства стандартного кремния, арсенида галлия лишь усилит такую экологическую нагрузку. Переход к рулонным солнечным батареям – это очевидно существенный выигрыш в экологичности.

Германия фактически отказалась от атомной энергии, но это чисто политическое решение.

Биотопливо неэффективно. Некоторое время назад был бум на производство биотоплива из маиса, но из-за нехватки посевных площадей резко (чуть ли не в разы) подскочили цены на продукты питания.

Проблемы ветроэлектростанций: Инфразвук (ветряки имеют такую частоту оборотов, от которой погибает всё живое или убегают – эту опасность мы осознаем позже) и площадь (ветряками покрыта огромная часть площади в Калифорнии, в Европе).

Перспективы развития ВИЭ

Мировой энергетический баланс: уголь (около трети), ветер (5%), солнце (2%). Доля ВИЭ 7% (данные Bloomberg, 2013 ). К 2050 году доля ВИЭ составит 40% , включая гидроэлектростанции (Международное энергетическое агентство ).

Базовым драйвером будет не СО 2 , а экономика каждого вида генерации.

Энергетический прогресс будет продолжаться, ВИЭ станут всё более и более конкурентоспособными и начнут конкурировать с атомной энергетикой. Если произойдёт мощный технологический скачок, то картина изменится существенным образом.

Ожидается, что в ближайшее десятилетие произойдёт сетевой паритет – это ситуация, при которой себестоимость киловатта в час, выработанной солнечной энергией, будет равна себестоимости производства сетевого киловатт в час. В разных странах это произойдёт в разное время. Многие эксперты говорят, что с 2014 по 2024 гг. через сетевой паритет пройдут абсолютное большинство европейских и не только европейских стран. После прохождения сетевого паритета начнётся совсем другое, более масштабное использование ВИЭ и без дотаций, естественный спрос.

Солнечная энергетика: переход от традиционных технологий (мультикремний, поликремний, тонкие плёнки, арсенид галлия) к рулонным технологиям, т.е. к поставке солнечных батарей в виде мотка или куска любых размеров в зависимости от спроса.

Перспективы развития ВИЭ в России

В России газ и уголь останутся базовыми отраслями. В связи с развитием ВИЭ вырастут обслуживающие отрасли – машиностроение по производству оборудования для солнечной энергетики и для ветроэнергетики, вырастут инженерная база и финансирование в науку. Россия стояла у истоков зарождения солнечной энергетики (Курчатовский институт, физтехи, космос) на высочайшем уровне понимания и эти научные знания – наше конкурентное преимущество перед всем миром. Важно, что страны с развитыми инжинирингом и наукой получат и мировой рынок.

Россия – энергетическая сверхдержава, на первый взгляд ВИЭ нам особо не нужна, но это необходимо будет делать. Исчерпаемость ресурсов (даже если это 50, 100 лет), поэтому несмотря на богатые ресурсы России, ВИЭ нам нужна и необходимы дотации – это осознается на высоком уровне и вводятся меры: Минэнерго разрабатывает проект по стимулированию ВИЭ, начинается стимулирование композитной отрасли (углепластики для ветроэнергетики).

Россия имеет уникальные конкурентные преимущества для развития всех видов альтернативных источников энергии – от геотермальной энергетики (гейзеры на Дальнем Востоке) до приливной энергетики на севере.

В России огромные площади , которые можно использовать под ВИЭ. Для установки ветряков у нас огромная береговая линия и огромная территория.

В России есть гигантская часть несетевой энергетики – это Дальний Восток, Якутия, Западная Сибирь, Приполярный Урал, Архангельская область, Мурманская область. Это обширные регионы, в которых существуют тысячи устаревших изолированных дизельных электростанций (в Европе изолированная энергетика – всего 0,6%). Цена генерации в тех местах невероятно высока, поэтому простая комплексная установка солнце-ветро-дизель абсолютно адекватна даже при нашей современной экономике.

По материалам выступлений спикеров на Гайдаровском форуме (секция «Энергетика», 16.03.2014)

Возобновляемыми называют такие источники энергии, запасы которых могут быть восполнены в природе естественным образом. Основное преимущество возобновляемой энергетики заключается в том, что она не требует использования невосполнимых природных ресурсов - нефти, угля и газа.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Минобрнауки России

федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Санкт-Петербургский государственный технологический институт

(технический университет)»

УГС (код, наименование) 080500 Бакалавр

Направление подготовки 080200 Финансовый менеджмент

Профиль (наименование) Финансовый менеджмент

Факультет экономики и менеджмента

Кафедра менеджмента и маркетинга

Учебная дисциплина _ экологический менеджмент

Курс 2 Группа 6381

Реферат.

Тема Возобновляемая энергетика – текущее состояние и перспектива развития в России и мире.

Студент _________________ К. В. Канева

Руководитель,

должность ________________ А.В. Ерыгина

(подпись, дата) (инициалы, фамилия)

Оценка за курсовую работу

(курсовой проект) ___________ ____________________

(подпись руководителя)

Санкт-Петербург

2014

  1. Возобновляемая энергетика.

Возобновляемая (альтернативная) энергетика — направление энергетики, основанное на производстве электрической энергии за счет возобновляемых источников (ВИЭ).

Возобновляемыми называют такие источники энергии, запасы которых могут быть восполнены в природе естественным образом. Основное преимущество возобновляемой энергетики заключается в том, что она не требует использования невосполнимых природных ресурсов — нефти, угля и газа. В отличие от современной атомной энергетики, «зеленая» энергетика, основанная на использовании возобновляемых источников энергии, не представляет угрозы для окружающей среды.

Согласно федеральному закону об электроэнергетике, к возобновляемым источникам энергии (ВИЭ) относятся: энергия солнца, энергия ветра, энергия воды, в том числе энергия сточных вод, энергия приливов, энергия волн водных объектов, в том числе водоемов, рек, морей, океанов; геотермальная энергия, биомасса, включающая в себя специально выращенные для получения энергии растения, в том числе деревья, а также отходы производства и потребления, за исключением отходов, полученных в процессе использования углеводородного сырья и топлива; биогаз, газ, выделяемый отходами производства и потребления на свалках таких отходов, газ, образующийся на угольных разработках.

Главным фактором, тормозящим развитие ВИЭ в России, является высокая себестоимость получаемой энергии. Однако с течением времени стоимость «зеленой» энергии постепенно снижается — в то время как стоимость энергии, получаемой от ископаемых источников, продолжает неуклонно расти. Таким образом, эффективность внедрения ВИЭ постоянно повышается. Говоря о будущем энергетики, мировые и отечественные эксперты, все чаще делают ставку на возобновляемые источники.

  1. Источники возобновляемой энергии.
    1. Энергия солнечного света.

Данный вид энергетики основывается на преобразовании электромагнитного солнечного излучения в электрическую или тепловую энергию.

Солнечные электростанции используют энергию Солнца как напрямую (фотоэлектрические СЭС работающие на явлении внутреннего фотоэффекта), так и косвенно — используя кинетическую энергию пара.

К СЭС косвенного действия относятся:

Башенные — концентрирующие солнечный свет гелиостатами на центральной башне, наполненной солевым раствором.

Солнечные пруды — представляют собой небольшой бассейн глубиной в несколько метров имеющий многослойную структуру. Верхний — конвективный слой — пресная вода; ниже расположен градиентный слой с увеличивающейся книзу концентрацией рассола; в самом низу слой крутого рассола. Дно и стенки покрыты чёрным материалом для поглощения тепла. Нагрев происходит в нижнем слое, так как рассол имеет более высокую по сравнению с водой плотность, увеличивающуюся при нагреве из-за лучшей растворимости соли в горячей воде, конвективного перемешивания слоёв не происходит и рассол может нагреваться до 100 °C и более. В рассольную среду помещён трубчатый теплообменник по которому циркулирует легкокипящая жидкость (аммиак и др.) и испаряется при нагреве передавая кинетическую энергию паровой турбине.

Крупнейшая электростанция подобного типа находится в Израиле, её мощность 5 Мвт, площадь пруда 250 000 м2, глубина 3 м.

  1. Энергия ветра.

Ветроэнергетика - это отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, тепловую и любую другую форму энергии для использования в хозяйстве. Преобразование происходит с помощью ветрогенератора (для получения электричества), ветряных мельниц и многих других видов агрегатов. Энергия ветра является следствием деятельности солнца, поэтому она относится к возобновляемым видам энергии.

Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.

Ветряные генераторы практически не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет эксплуатации позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

В перспективе планируется использование энергии ветра не посредством ветрогенераторов, а более нетрадиционным образом. В городе Масдар (ОАЭ) планируется строительство электростанции работающей на пьезоэффекте. Она будет представлять собой лес из полимерных стволов покрытых пьезоэлектрическими пластинами. Эти 55-метровые стволы будут изгибаться под действием ветра и генерировать ток.

  1. Гидроэнергия.

Гидроэнергетика — область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования энергии водного потока в электрическую энергию.

На гидроэлектростанциях, в качестве источника энергии используется потенциальная энергия водного потока, первоисточником которой является Солнце, испаряющее воду, которая затем выпадает на возвышенностях в виде осадков и стекает вниз, формируя реки. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Также возможно использование кинетической энергии водного потока на так называемых свободно поточных (бесплотинных) ГЭС.

Особенности:

  1. Себестоимость электроэнергии на ГЭС существенно ниже, чем на всех иных видах электростанций
  2. Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии
  3. Возобновляемый источник энергии
  4. Значительно меньшее воздействие на воздушную среду, чем другими видами электростанций
  5. Строительство ГЭС обычно более капиталоёмкое
  6. Часто эффективные ГЭС более удалены от потребителей
  7. Водохранилища часто занимают значительные территории
  8. Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.

На 2010 год гидроэнергетика обеспечивала производство до 76 % возобновляемой и до 16 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигала 1015 ГВт. Лидерами по выработке гидроэнергии на гражданина являются Норвегия, Исландия и Канада. Наиболее активное гидростроительство ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций мира.

  1. Энергия приливов и отливов.

Электростанциями этого типа являются особого вида гидроэлектростанции, использующие энергию приливов. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды.

Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов). В последнем случае они называются гидроаккумулирующая электростанция.

Преимуществами приливных электростанций являются экологичность и низкая себестоимость производства энергии. Недостатками — высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего приливная электростанция может работать только в единой энергосистеме с другими типами электростанций.

  1. Энергия волн.

Волновые электростанции используют потенциальную энергию волн переносимую на поверхности океана. Мощность волнения оценивается в кВт/м. По сравнению с ветровой и солнечной энергией энергия волн обладает большей удельной мощностью. Несмотря на схожую природу с энергией приливов, отливов и океанских течений волновая энергия представляет собой отличный от них источник возобновляемой энергии.

  1. Геотермальная энергия.

Геотермальная энергетика — направление энергетики, основанное на производстве электрической энергии за счёт энергии, содержащейся в недрах земли, на геотермальных станциях. Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы.

В вулканических районах циркулирующая вода перегревается выше температуры кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотермальной энергии в качестве источника тепла.

Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении.

Главным достоинством геотермальной энергии является её практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.

Существуют следующие принципиальные возможности использования тепла земных глубин. Воду или смесь воды и пара в зависимости от их температуры можно направлять для горячего водоснабжения и теплоснабжения, для выработки электроэнергии либо одновременно для всех этих целей. Высокотемпературное тепло околовулканического района и сухих горных пород предпочтительно использовать для выработки электроэнергии и теплоснабжения. От того, какой источник геотермальной энергии используется, зависит устройство станции.

Если в данном регионе имеются источники подземных термальных вод, то целесообразно их использовать для теплоснабжения и горячего водоснабжения. Например, по имеющимся данным, в Западной Сибири имеется подземное море площадью 3 млн м2 с температурой воды 70—90 °С. Большие запасы подземных термальных вод находятся в Дагестане, Северной Осетии, Чечне, Ингушетии, Кабардино-Балкарии, Закавказье, Ставропольском и Краснодарском краях, на Камчатке и в ряде других районов России, также в Казахстане.

Главная из проблем, которые возникают при использовании подземных термальных вод, заключается в необходимости возобновляемого цикла поступления (закачки) воды (обычно отработанной) в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (например, бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности.

Наибольший интерес представляют высокотемпературные термальные воды или выходы пара, которые можно использовать для производства электроэнергии и теплоснабжения.

  1. Биомасса и биогаз.

Биомасса — неископаемые органические вещества биологического происхождения.

Первичная биомасса — растения, непосредственно (или без химической обработки) используемые для получения (добычи) энергии. К ним относятся, прежде всего, отходы сельского и лесного хозяйства.

Вторичная биомасса — остатки переработки первичной биомассы веществ — прежде всего в результате их потребления человеком и животными или переработки в домашнем хозяйстве или промышленности. К ним относятся, прежде всего, навоз, жидкий компост, жидкие стоки очистных сооружений.

Биотопливо — отходы сельскохозяйственного производства, пищевой и других видов промышленности, органическое вещество сточных вод и городских свалок — отходы, состоящие из биологического сырья — веществ биологического происхождения.

Биомасса представляет собой весьма широкий класс энергоресурсов. Ее энергетическое использование возможно через сжигание, газификацию, пиролиз и биохимическую переработку анаэробного сбраживания жидких отходов с получением спиртов или биогаза. Каждый из этих процессов имеет свою область применения и назначение.

Некоммерческое использование биомассы (проще говоря, сжигание дров) наносит большой ущерб окружающей среде. Хорошо известны проблемы обезлесения и опустынивания в Африке, сведения тропических лесов в Южной Америке. С другой стороны, использование древесины от энергетических плантаций является примером получения энергии от органического сырья с суммарными нулевыми выбросами диоксида углерода.

Биогаз является одним из видов биотоплива, которое получают из биомассы. Поскольку биогаз производится их биомассы, он относится к одному из видов возобновляемых источников энергии.

Биогаз получают из биологического материала живых организмов (органического вещества), и он формируется в процессе биологического распада этого органического вещества при отсутствии кислорода. Биогаз можно получать из городских органических отходов, лесосечных отходов, растительного материала, навоза и других источников. Биогаз состоит в основном из метана и диоксида углерода и может содержать небольшое количество сероводорода.

  1. Меры поддержки возобновляемых источников энергии.

На данный момент существует достаточно большое количество мер поддержки возобновляемых источников энергии. Некоторые из них уже зарекомендовали себя как эффективные и понятные участникам рынка. Это такие меры, как:

  1. Зеленые сертификаты;

Под зелеными сертификатами понимаются сертификаты, подтверждающие генерацию определенного объема электроэнергии на основе ВИЭ. Данные сертификаты получают только квалифицированные соответствующим органом производители. Как правило, зеленый сертификат подтверждает генерацию 1Мвт ч, хотя данная величина может быть и другой. Зеленый сертификат может быть продан либо вместе с произведенной электроэнергией, либо отдельно, обеспечивая дополнительную поддержку производителя электроэнергии. Для отслеживания выпуска и принадлежности «зеленых сертификатов» используются специальные программно-технические средства (WREGIS, M-RETS, NEPOOL GIS). В соответствии с некоторыми программами сертификаты можно накапливать (для последующего использования в будущем), либо занимать (для исполнения обязательств в текущем году). Движущей силой механизма обращения зеленых сертификатов является необходимость выполнения компаниями обязательств, взятых на себя самостоятельно или наложенных правительством. В зарубежной литературе «зеленые сертификаты» известны также как: Renewable Energy Certificates (RECs), Green tags, Renewable Energy Credits.

  1. Возмещение стоимости технологического присоединения;

Для повышения инвестиционной привлекательности проектов на основе ВИЭ государственными органами может предусматриваться механизм частичной или полной компенсации стоимости технологического присоединения возобновляемых источников к сети.

  1. Фиксированные тарифы на энергию ВИЭ («зелёные» тарифы)

Накопленный в мире опыт позволяет говорить о фиксированных тарифах как о самых успешных мерах по стимулированию развития возобновляемых источников энергии. В основе данных мер поддержки ВИЭ лежат три основных фактора:

  • гарантия подключения к сети;
  • долгосрочный контракт на покупку всей произведенной ВИЭ электроэнергии;
  • гарантия покупки произведенной электроэнергии по фиксированной цене.

Фиксированные тарифы на энергию ВИЭ могут отличаться не только для разных источников возобновляемой энергии, но и в зависимости от установленной мощности ВИЭ. Одним из вариантов системы поддержки на основе фиксированных тарифов является использование фиксированной надбавки к рыночной цене энергии ВИЭ. Как правило, надбавка к цене произведенной электроэнергии или фиксированный тариф выплачиваются в течение достаточно продолжительного периода (10-20 лет), тем самым гарантируя возврат вложенных в проект инвестиций и получение прибыли.

  1. Система чистого измерения;

Данная мера поддержки предусматривает возможность измерения отданного в сеть электричества и дальнейшее использование этой величины во взаиморасчетах с электроснабжающей организацией. В соответствии с «системой чистого измерения» владелец ВИЭ получает розничный кредит на величину, равную или большую выработанной электроэнергии. В соответствии с законодательством, во многих странах электроснабжающие организации обязаны предоставлять потребителям возможность осуществления чистого измерения.

4 . Использование возобновляемых источников энергии в мире

В последние десятилетия в мировой энергетике наблюдаются качественные изменения, обусловленные экономическими, политическими и технологическими причинами. Одна из основных тенденций - снижение потребления топливных ресурсов – их доля в общемировом производстве электроэнергии за последние 30 лет сократилась с 75% до 68% в пользу использования возобновляемых ресурсов (рост с 0,6% до 3,0%).

Странами-лидерами в развитии производства энергии из нетрадиционных источников являются Исландия (на долю возобновляемых источников энергии приходится около 5% энергетики, в основном используются геотермальные источники), Дания (20,6%, основной источник – энергия ветра), Португалия (18,0%, основные источники – энергия волн, солнца и ветра), Испания (17,7%, основной источник – солнечная энергия) и Новая Зеландия (15,1%, в основном используется энергия геотермальных источников и ветра).

Крупнейшими мировыми потребителями возобновляемой энергии являются Европа, Северная Америка и страны Азии.

Китай, США, Германия, Испания и Индия обладают почти тремя четвертями общемирового парка ветроэнергетических установок. Среди стран, которые характеризуются наилучшим развитием малой гидроэнергетики, лидирующее положение занимает Китай, на втором месте Япония, на третьем — США. Пятерку лидеров замыкают Италия и Бразилия.

В общей структуре установленных мощностей объектов солнечной энергетики лидирует Европа, далее следуют Япония и США. Высокий потенциал развития солнечной энергетики имеют Индия, Канада, Австралия, а также ЮАР, Бразилия, Мексика, Египет, Израиль и Марокко.

Первенство в геотермальной электроэнергетике сохраняют США. Затем идут Филиппины и Индонезия, Италия, Япония и Новая Зеландия. Активно развивается геотермальная энергетика в Мексике, в странах Центральной Америки и в Исландии - там за счет геотермальных источников покрывается 99% всех энергетических затрат. Перспективными источниками перегретых вод обладают множественные вулканические зоны, в том числе Камчатка, Курильские, Японские и Филиппинские острова, обширные территории Кордильер и Анд.

Согласно многочисленным экспертным заключениям, мировой рынок возобновляемой энергетики продолжит успешное развитие, и к 2020 году доля возобновляемых источников энергии в производстве электроэнергии в Европе составит около 20%, а доля ветровой энергии в производстве электрической энергии в мире – около 10%.

  1. Использование возобновляемых источников энергии в России

Россия занимает одно из ведущих мест в мировой системе оборота энергоресурсов, активно участвует в мировой торговле ими и в международном сотрудничестве в этой сфере. Особенно значимы позиции страны на мировом рынке углеводородов. Вместе с тем страна практически не представлена на мировом рынке энергетики, основанной на возобновляемых источниках энергии.

Общая установленная мощность электрогенерирующих установок и электростанций, использующих возобновляемые источники энергии, в России в настоящее время не превышает 2 200 МВт.

С использованием возобновляемых источников энергии ежегодно вырабатывается не более 8,5 млрд. кВтч электрической энергии, что составляет менее 1% от общего объема производства электроэнергии. Доля возобновляемых источников энергии в общем объеме отпускаемой тепловой энергии составляет не более 3,9%.

Структура выработки энергии на базе возобновляемых источников энергии в России значительно отличается от общемировой. В России наиболее активно используются ресурсы тепловых электростанций на биомассе (доля в выработке электроэнергии – 62,1%, в выработке тепловой энергии – не менее 23% на ТЭС и 76,1% на котельные), в то время как общемировой уровень использования биоТЭС – 12%. При этом в России почти совсем не используются ресурсы ветро- и солнечной энергетики, зато около трети выработки электроэнергии приходится на малые ГЭС (против 6% в мире).

Мировой опыт показывает, что первоначальный толчок к развитию возобновляемой энергетики, особенно в странах, богатых традиционными источниками, должен быть дан государством. В России же никакой поддержки этом сектору энергетической отрасли практически не оказывается.

Вывод.

Возобновляемые источники энергии (ВИЭ) – это те ресурсы, которые человек может использовать, не причиняя вреда окружающей среде.

Энергетика, использующая возобновляемые источники, называется «альтернативной энергетикой» (в отношении традиционных источников – газа, нефтепродуктов, угля), что указывает на минимальный вред окружающей среде.

Преимущества использования возобновляемых источников энергии (ВИЭ) связаны с экологией, воспроизводимостью (неисчерпаемостью) ресурсов, а также с возможностями получения энергии в труднодоступных местах проживания населения.

К недостаткам энергетики на ВИЭ часто относят низкий КПД технологий выработки энергии на таких ресурсах (на текущий момент времени), недостаточность мощностей для промышленного потребления энергии, потребность в значительных территориях посева «зеленых агрокультур», наличие повышенного шумоуровня и виброуровня (для ветровой энергетики), а также сложности добычи редкоземельных металлов (для солнечной энергетики).

Применение возобновляемых источников энергии, связано с местными возобновляемыми ресурсами и государственной политикой.

Успешные примеры - это геотермальные станции, обеспечивающие энергией, отоплением и горячей водой города Исландии; «фермы» солнечных батарей в Калифорнии (США) и ОАЭ; «фермы» ветрогенерации в Германии, США и Португалии.

Для энергогенерации России, с учетом опыта использования, территорий, климата и обеспеченностью возобновляемыми источниками энергии, наиболее перспективными являются: гидростанции малой мощности, солнечная энергетика (особенно перспективна в ЮФО) и ветроэнергетика (Балтийское побережье, ЮФО).

Перспективный источник возобновляемой энергии, но требующий профессиональной технологической разработки - это бытовые отходы и газ метан, получаемый в местах их хранения.

До недавнего времени по целому ряду причин, прежде всего из-за огромных запасов традиционного энергетического сырья, вопросам развития использования возобновляемых источников энергии в энергетической политике России уделялось сравнительно мало внимания. В последние годы ситуация стала заметно меняться. Необходимость борьбы за лучшую экологию, новые возможности повышения качества жизни людей, участие в мировом развитии прогрессивных технологий, стремление повысить энергоэффективность экономического развития, логика международного сотрудничества – эти и другие соображения способствовали активизации национальных усилий по созданию более зеленой энергетики, движению к низкоуглеродной экономике.

Объем технически доступных ресурсов возобновляемых источников энергии в Российской Федерации составляет не менее 24 млрд. тонн условного топлива.

Литература:

  1. http://www.greenpeace.org/russia/ru/campaigns/energy/
  2. http://www.spbenergo.com
  3. http://re.energybel.by/
  4. http://worldtek.ru/alter/6-bioenergetika.html?showall=1
  5. Портал «ИнтерЭнерго»
  6. Министерство энергетики Российской Федерации

Другие похожие работы, которые могут вас заинтересовать.вшм>

16442. 151.52 KB
Именно поэтому необходимо вести речь о стабильном и долговременном развитии малого и среднего предпринимательства в Российской Федерации поскольку развитие МСП имеет не только экономическое но и социальное значение. Большинство же предприятий малого и среднего бизнеса которые были ориентированы на сдержанное развитие вели осторожную финансовую политику и самое главное выстраивали бизнес в четком соответствии с изменением спроса на свою продукцию сейчас нуждаются в облегченном доступе к финансовым ресурсам а также в разносторонней...
18941. ИНВЕСТИЦИОННЫЙ РЫНОК РОССИИ: СОСТОЯНИЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ 635.82 KB
Экономическая сущность инвестиций в экономике. Эффективное становление экономической ситуации в стране напрямую и косвенно зависит от состояния рынка инвестиций. Значимость инвестиций в экономике очень высока и определяется тем что благодаря инвестициям происходит накопление общественного капитала внедряются нано технологии осуществляется строительство поддерживается на достойном уровне образование и медицина создается база для расширения производственных возможностей и многое другое. Объем инвестиций определяет экономический рост...
3112. Состояние и направления развития платежной системы России 709.24 KB
Развитие экономики любого государства в настоящее время невозможно без высокоэффективной платежной системы и использования современных платежных механизмов. Практика показывает, что каждодневные проблемы финансирования, кредитования экономики, исполнения бюджета, а также задачи отдаленной перспективы, позволяет успешно решать интенсивное развитие различных форм безналичных расчетов.
7608. Состояние рынка земли в России 67.95 KB
Проблема совершенствования правового регулирования земельных отношений в России в последнее время стала одной из самых актуальных, и широко обсуждается не только среди юристов, законодателей и политиков, но и в обществе в целом. Мнения сторон, участвующих в обсуждении иногда противоречивы
20825. Современное состояние человеческого капитала России 112.04 KB
Объектом исследования: современное состояние человеческого капитала России. Цель работы: исследовать теорию человеческого капитала и управление человеческими ресурсами организации. В результате исследования была исследована теория человеческого капитала и проанализировано современное состояние человеческого капитала в России выявлены основные проблемы и перспективные...
14035. Современное состояние ипотечного кредитования в России 29.71 KB
Одним из самых активно развивающихся институтов на сегодняшний день является институт ипотеки. Без его соответствующего совершенствования не стоит и говорить о функционировании адекватной экономики рынка, так как ипотека, первым делом – это главный инструмент кредитования.
16935. Состояние и перспективы внешней торговли России 138.67 KB
Макроэкономика ФГОУ ВПО Финансовая академия при Правительстве РФ Состояние и перспективы внешней торговли России В конце ХХ в. в России начался переход к рыночным отношениям произошел коренной поворот ее внешнеэкономической политики от ориентации на относительную замкнутость к открытой экономике и интеграции в систему мирохозяйственных связей к либерализации всех форм внешнеэкономической деятельности. По данным: Министерства Экономического Развития Российской Федерации МЭР Москва 2009 г С принятием нормативно-правовых актов...
9295. Современное состояние налогообложения развитых стран и России 22.7 KB
Налоговая реформа 80-90х гг. Основные показатели характеризующие налоговую систему стран с рыночной экономикой. Современное состояние налоговой системы России. Инициаторами данных изменений становились экономически развитые страны что повлекло изменение их налоговых систем теоретических и практических основ налоговой политики.
13681. Состояние и специфика бюджета переходной экономики России 46.46 KB
Социально-экономическая сущность и структура государственного бюджета. Функции государственного бюджета в современной экономике. Проблема сбалансированности и механизмы регулирования структуры государственного бюджета. Анализ государственного бюджета РФ. Структура и динамика государственного бюджета РФ 3 Состояние и специфика бюджета переходной экономики России.
19875. Состояние и перспективы развития ОАО НК «Роснефть» 337.96 KB
Исторический аспект создания и развития ОАО НК Роснефть. История развития ОАО НК Роснефть. Характеристика ОАО НК Роснефть Основные задачи деятельности ОАО НК Роснефть Организационная и производственная структуры ОАО НК Роснефть.

Введение

В современном мире существуют несколько глобальных проблем. Одна из них - истощение природных ресурсов. С каждой минутой в мире используется огромное количество нефти и газа для нужд человека. Поэтому возникает вопрос: на долго ли нам хватит этих ресурсов, если продолжать их использовать в таком же огромном объеме? По расчетам, запас нефтяных ресурсов планеты исчерпается к концу нынешнего столетия. То есть, нашим внукам и правнукам будет нечего использовать для получения энергии? Звучит пугающе. Также использование традиционных полезных ископаемых плохо влияет на экологическую обстановку мира. Поэтому, человечество сейчас все больше задумывается об альтернативных источниках получения энергии. В этом и состоит актуальность данной работы.

Объектом исследования данной работы являются возобновляемые источники энергии. Предмет исследования - возможности использования возобновляемых источников энергии.

Цель работы заключается в анализе возможности использования нетрадиционных энергоресурсов в России и мире.

Для достижения указанной цели необходимо решить ряд задач:

Рассмотреть классификацию возобновляемых источников энергии

Провести литературный обзор;

Рассмотреть виды ВИЭ и возможности их развития в мире и России;

В работе были использованы следующие методы исследования:

) описательный;

) логического анализа и синтеза;

) библиографический;

1. Возобновляемые энергоресурсы

1.1 Классификация возобновляемых источников энергии

Возобновляемые источники энергии (ВИЭ) - это энергоресурсы постоянно существующих природных процессов на планете, а также энергоресурсы продуктов. жизнедеятельности биоцентров растительного и животного происхождения Характерной особенностью ВИЭ является цикличность их возобновления, которая позволяет использовать эти ресурсы без временных ограничений.

Обычно, к возобновляемым источникам энергии относят энергию солнечного излучения, потоков воды, ветра, биомассы, тепловую энергию верхних слоев земной коры и океана.

ВИЭ можно классифицировать по видам энергии:

механическая энергия (энергия ветра и потоков воды);

тепловая и лучистая энергия (энергия солнечного излучения и тепла Земли);

химическая энергия (энергия, заключенная в биомассе).

Потенциальные возможности ВИЭ практически неограниченны, но несовершенство техники и технологии, отсутствие необходимых конструкционных и других материалов пока не позволяет широко вовлекать ВИЭ в энергетический баланс. Однако за последние годы в мире особенно заметен научно-технический прогресс в сооружении установок по использованию ВИЭ и в первую очередь: фотоэлектрических преобразований солнечной энергии, ветроэнергетических агрегатов и биомассы.

Целесообразность и масштабы использования возобновляемых источников энергии определяются в первую очередь их экономической эффективностью и конкурентоспособностью с традиционными энергетическими технологиями. Это объясняется несколькими причинами:

Неисчерпаемость ВИЭ;

Нет потребности в транспортировке;

ВИЭ - экологически выгодны и не загрязняют окружающую среду;

Отсутствие топливных затрат;

При определенных условиях, в малых автономных энергосистемах, ВИЭ могут оказаться экономически выгоднее, чем традиционные ресурсы;

Нет необходимости в использовании воды в производстве.

Также, к преимуществам перехода на «зеленую» энергетику относят устранение рисков, связанных с атомной энергетикой (возможность аварий, проблема захоронения радиоактивных отходов), уменьшение последствий возможного энергетического кризиса, сокращение затрат на невозобновляемые ресурсы, прежде всего нефть и газ, а также снижение выбросов парниковых газов. Таким образом, необходимость использования возобновляемых источников энергии определяется такими факторами:

исчерпание в ближайшем будущем разведанных запасов органического топлива;

загрязнением окружающей среды окисями азота и серы, углекислым газом, пылевидными остатками от сгорания добываемого топлива, радиоактивным загрязнением и тепловым перегревом при использовании ядерного топлива;

быстрым ростом потребности в электрической энергии, потребление которой может возрасти в несколько раз в ближайшие годы.

1.2 Ветроэнергетика

Энергия ветра уже более 6000 тысяч лет используется людьми.

Первые простейшие ветродвигатели применяли в глубокой древности в Египте и Китае. В Египте (около Александрии) сохранились остатки каменных ветряных мельниц барабанного типа, построенных ещё во II-I вв. до н. э. Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в 13-м веке принесены в Европу крестоносцами.

Начиная с XIII в., ветродвигатели получили широкое распространение в Западной Европе, особенно в Голландии, Дании и Англии, для подъёма воды, размола зерна и приведения в движение различных станков.

Ветряные мельницы, производящие электричество, были изобретены в 19-м веке в Дании. Там в 1890-м году была построена первая ветроэлектростанция, а к 1908-му году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 м и четырехлопастные роторы диаметром 23 м.

Однако в начале 19-20вв. НТП затормозил развитие ветроэнергетики. Полезные ископаемые, такие как нефть и газ, заменили ветер в качестве источника энергии. Но человечество такими темпами истощает природные ресурсы Земли, что вновь встает вопрос о возврате к истокам, т.е. к новому этапу развития ветровой энергетики.

Наиболее острый вопрос ветроэнергетики - экономическая эффективность ВЭУ. Очень важно выбрать правильное место для установки агрегатов. Для этого существуют специальные характеристики, позволяющие правильно подобрать местоположение. Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10-12 км от берега (а иногда и дальше) строятся оффшорные фермы. Башни ветрогенераторов устанавливают фундаменты из свай, забитых на глубину до 30 метров. Также могут использоваться и другие типы подводных фундаментов, а также плавающие основания.

Не стоит забывать, что производительность энергии зависит от 2 главных факторов: направления и скорости ветра.

Скорость ветра - главное препятствие развития ветровой энергетики. Ветер характеризуется не только многолетней и сезонной изменчивостью. Он может менять скорость и направление в течение очень коротких промежутков времени. Отчасти кратковременные колебания скорости ветра компенсируются самим ветроагрегатом, особенно на больших скоростях ветра, когда он начинает подтормаживать своё вращение (обычно, после 13-15 м/с). Однако более длительные изменения или снижение скорости ветра влияют на выработку ветроагрегата и всего ветропарка в целом. Но в современной ветроэнергетике этот недостаток сводится к минимуму тем, что ветромониторинг, начинающийся еще на предпроектной стадии, продолжает вестись и в дальнейшем. Накопленная база данных ветропотенциала позволяет прогнозировать выработку ветропарка уже на 2-м году его эксплуатации на 24 часа вперед с достаточно высокой для электрических сетей точностью.

Все ветровые установки можно разделить на 2 больших типа: с вертикальной осью вращения ротора и с горизонтальной.

Рисунок 1.1 Вертикально-осевая ветроэнергетическая установка Савониуса

Рисунок 1.2. Традиционная горизонтально-осевая ветряная установка

ВЭС с вертикальной осью вращения (на вертикальную ось «насажено» колесо, на котором закреплены «приемные поверхности» для ветра), в отличие от крыльчатых, могут работать при любом направлении ветра, не изменяя своего положения. Ветродвигатели этой группы тихоходны, поэтому не создают большого шума. В них используются многополюсные электрогенераторы, работающие на малых оборотах, что позволяет применять простые электрические схемы без риска потерпеть аварию при случайном порыве ветра. Главными недостатками таких агрегатов является их малый период вращения и малый КПД по сравнению с горизонтальными ВЭС. К побочным действиям работы таких установок следует отнести наличие низкочастотных вибраций, возникающих за счет дисбаланса ротора.

Агрегаты с горизонтальной осью вращения являются традиционной компоновкой ветряков. В них используются лопасти, которые вращаются под действием ветрового потока. Система устанавливается в самое выгодное положение в потоке ветра с помощью крыла-стабилизатора. На мощных станциях, работающих на сеть, для этого используется электронная система управления рысканием. Недостатками такой системы являются высокий уровень шума, потеря в механической передаче энергии, снижение продолжительности эксплуатации оборудования. Также при сильных порывах ветра лопасти агрегаты могут получить значительные повреждения или, вовсе, сломаться.

Ветроэнергетический рынок - один из самых динамично развивающихся в мире. Его рост за 2009 год - 31%.До сих пор ветроэнергетика наиболее динамично развивалась в странах ЕС, но сегодня эта тенденция начинает меняться. Всплеск активности наблюдается в США и Канаде, в то время как в Азии и Южной Америке возникают новые рынки. В Азии, как в Индии, так и в Китае, в 2005 году зарегистрирован рекордный уровень роста.

В настоящее время промышленным производством ВУЭ занимается более 300 фирм. Наиболее развитую промышленность имеют Дания, Германия, США. Серийное производство ветроустановок развито в Нидерландах, Великобритании, Италии и других странах.

1.3 Гидроэнергетика

ветроэнергетика солнечный возобновляемый

Человек с давних пор использовал энергию воды и ее течения в своих нуждах. Поэтому история гидроэнергетики берет свое начало с древних времен: еще древние греки использовали водяные колеса для помола зерна. С течением времени технологии совершенствовались, и в 19 веке была изобретена первая водная турбина. Ее создали отдельно друг от друга 2 ученых: русский исследователь И. Сафонов в 1837 и французский ученый Фурнейрон в 1834 году. Однако изобретателем гидротурбины, можно даже сказать первой ГЭС, считается М. Доливо-Добровольский. Свое изобретение он продемонстрировал на выставке во Франкфурте. Оно состояло из генератора трехфазного тока, который вращала водяная турбина, а электричество, вырабатываемое ею, передавалось по 170 километровым проводам на всю территорию выставки. В настоящее время энергия воды составляет более 60 процентов от всех ВИЭ и является самой производительной из всех (КПД современных ГЭС составляет около 85-95%). После этого в мире начинается «гидроэнергетический бум».

Основными причинами столь бурного развития гидроэнергетики являются постоянное возобновление ресурсов круговоротом воды в природе и относительно простыми механизмами добычи самой энергии. Однако, зачастую, постройка и установка ГЭС очень трудоемкий и капиталоемкий процесс. Особенно это относится к сооружению плотин и накоплению огромных масс воды за ними. Также стоит отметить, что добыча гидроэнергии экологически чистый процесс. Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии.

Если описывать работу ГЭС, то ее принцип заключается в выработке энергии турбиной, вращаемой с помощью падающей с неопределенной высоты воды. Гидравлическая турбина преобразует энергию воды, текущей под напором, в механическую энергию вращения вала. Существуют разные конструкции гидротурбин, соответствующие разным скоростям течения и разным напорам воды, но все они имеют только два лопастных венца. Ось вращения турбины, рассчитанной на большой расход и малый напор, обычно располагают горизонтально. Такие турбины называют осевыми или пропеллерными. Во всех крупных осевых турбинах лопасти рабочего колеса могут поворачиваться в соответствии с изменениями напора, что особенно ценно в случае приливных ГЭС, всегда работающих в условиях переменного напора. Турбины устанавливаются в зависимости от напора водяного потока на ГЭС.

Гидравлическая энергия рек обусловлена проекцией силы тяжести на направление движения потока воды, которая определяется разностью уровней воды в начале и в конце рассматриваемого участка реки. При разности уровней Н [м] на длине участка / [м] и среднем расходе воды Q [м 3 /с], мощность водотока/* [Вт] составит:

P= сgQH= 9810QH (1)

где р - плотность воды, кг/м 3 ; g - ускорение свободного падения, м/с 2 .

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

Мощные - вырабатывают от 25 МВТ до 250 МВт и выше;

Средние - до 25 МВт;

Малые гидроэлектростанции - до 5 МВт.

Мощность ГЭС напрямую зависит от напора воды, а также от КПД используемого генератора. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Существуют также гидроаккумулирующие электростанции. Они способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные моменты (времена не пиковой нагрузки), агрегаты ГАЭС работают как насосы, и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и, соответственно, приводит в действие дополнительные турбины.

В гидроэлектрические станции, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

В настоящее время лидерами по выработке гидроэнергии являются Норвегия, Китай, Канада, Россия. Лидером по количеству энергии воды на душу населения является Исландия.

1.4 Гелиоэнергетика

Солнце - один из самых источников излучения в нашей Вселенной. И поэтому не случайно энергия звезды все больше используется человеком для переработки в электричество. Действительно, излучение Солнца, доходящее до всей поверхности Земли, имеет колоссальную мощность 1,2*10 14 кВт. И иногда очень обидно, что огромная часть этой энергии пропадает зря, особенно если она по своему количеству в разы превосходит ресурсы всех остальных ВИЭ вместе взятых. Поэтому в последние годы все активнее развивается гелиоэнергетика, в которой используется солнечная радиация для получения электричества.

Первые зачатки гелиоэнергетики появились в середине 19 века. Первооткрывателями стали ученые Адамс и Дей, которые впервые провели эксперимент с твердотельными фотоэлектрическими элементами на основе селена. Однако прошло более 50-ти лет, чтобы их открытие переросло во что-то большее. Основой для создания первых солнечных батарей послужила разработка теории полупроводниковых материалов с p-n переходом. В этой методике используются атомы кремния. Суть всей технологии заключается в том, что при повышении температуры молекулы кремния за счет нагревания солнечной энергией, тепловые колебания кристаллической решетки приводят к разрыву некоторых валентных связей. В результате этого часть электронов, ранее участвовавших в образовании валентных связей, отщепляется и становится электронами проводимости. При наличии электрического поля они перемещаются против поля и образуют электрический ток.

В целом, поступление радиации на земную поверхность зависит от:

Географической широты;

Состояния атмосферы;

Климатических особенностей территории;

Высоты места приема над уровнем моря;

Высоты солнца над горизонтом и др.

Общее излучение, доходящее до Земли подразделяется на:

Прямое излучение, дошедшее до Земли;

Рассеянная радиация;

Противоизлучение атмосферы.

На основе этих величин составляется суммарный радиационный баланс земли, по которому определяются наиболее удачные места для расположения гелиостанций.

Классифицировать их можно по:

) Виду преобразования солнечной энергии в другие ее виды - тепло или электричество

) Концентрированию энергии - с концентраторами или без них
3) Технической сложности - простые и сложные

К простым установкам относят опреснители, нагреватели воды, сушилки, печные нагреватели ит.д.

К сложным относятся установки, которые преобразуют поступившую солнечную энергию в электрическую путем фотоэлектрических приборов.

Тепловые гелиостанции в основном используются для нагрева воды и воздуха. Также солнечное тепло используется для различных печей и зерносушек, а также в солнечных дистилляторах, которые могут вырабатывать чистейшую пресную воду.

В термоэлектрических преобразователях солнечная энергия используется для возникновения эффекта Зеебека. Он заключается в том, что если два различных проводника, соединенных последовательно, содержать в разных температурных средах, то в них появляется электродвижущая сила. Следовательно, вырабатывается ток. Солнечная радиация применяется для того, чтоб создать разность температур. Обычно, ею нагревается «горячий» проводник. Обычно, такие установки применяются как автономные источники питания.

Концентраторами солнечной энергии являются параболовидные агрегаты, сделанные обычно из стекла или полированного металла. Их значение заключается в том, чтобы «ловить» солнечные лучи и отражать их в солнечный коллектор.

Одним из лидеров использования солнечной энергии является Швейцария. В данный момент в стране эффективно развивается программа по строительству гелиостанций. Также идет тенденция на производство солнечных батарей, устанавливающихся на крыши зданий или как фасады. Такие установки могут компенсировать 50…70% энергии, затрачиваемой на производство

1.5 Энергия биомассы

К биомассе относятся все вещества органического происхождения.

Что же можно применить в качестве источника энергии?

1. Древесина. Уже многие тысячи лет человек использует дрова для получения тепла, приготовления пищи, освещения жилья. Да и до сих пор в мелких поселениях традиционно используется этот вид получения энергии. К сожалению это все приводит к одной из важнейших проблем мира - вырубки лесов. Однако эта задача решается с помощью использования энергии быстрорастущих деревьев, таких как тополь, ива и др.

2. Отстой сточных вод. Если вдуматься, то в использованных человеком водах таятся огромные запасы энергии. При отстаивании жидкости образуется огромное количество твердого вещества, которое при переработке анаэробными бактериями может содержать около 50% органического вещества. Однако существуют значительные трудности при переработке сточных вод. Главное из них - высушивание этих вод, так как на это тратится много тепла, которое по своим количественным характеристикам может превосходить теоретические значение энергии при полном сгорании отстоянного вещества. Также этот процесс не рентабелен с точки зрения экологии. Ведь при сгорании выделяется большое количество углекислого газа. Самым правильным вариантом в этом случае считается получение метана при помощи анаэробных бактерий. Но установки для этого весьма несовершенны, поэтому этот способ в современное время не получает большого размаха.

Отходы животноводства. Экскременты животных содержат высокое количество органического вещества, которые может использоваться для получения энергии. Однако так же, как и в случае со сточными водами, в навозе содержится большое количество влаги, поэтому его высушивание не выгодно. Тогда существует другой вариант - это анаэробное перегнивание. С помощью него получают метан, а оставшиеся вещества могут пойти на удобрения для почв. Но стоит помнить, что количество перерабатываемого вещества гораздо больше в более свежем навозе, поэтому, чтобы его переработка была экономически выгодна, нужны специальные постройки, позволяющие собирать все экскременты в одно место, не теряя его свежести.

Растительные остатки. После сбора урожая всегда остаются неиспользуемые части растений. Они представляют еще один источник энергии. В них содержится целлюлоза - углеродсодержащий углевод. Благодаря относительно небольшому количеству влаги в останках, при сжигании они выделяют много энергии. Ограничивающим фактором развития этого источника энергии является сезонность произрастания культур. Чтобы обеспечить круглогодичное использование останков растений, нужны специальные сооружения для их роста. Также немаловажными факторами являются потребность в перевозки к месту переработки и легкость сбора культур.

Пищевые отходы. Они тоже могут служить источником получения энергии. Особенно учитывая, что, например, в отходах фруктов содержится большее количество углеродсодержащих сахаров, чем в остатках зерновых культур, а в остатках мясных продуктов значительное количество протеина. Но наличие влаги затрудняет возможность получения энергии путем сгорания отходов. Поэтому целесообразней из них получать метан с помощью бактерий. Но тут появляется другая трудность: пищевые отходы с успехом используются в животноводстве. Поэтому этот источник практически не развивается в наше время. Исключение только составляют отходы в виде семян и шелухи, а также остатки от сахарного тростника. Например, в странах, где произрастает много тростника, его отходы идут на производство этанола, который при сжигании выделяет большое количество энергии. Самым ярким примером могут послужить Гавайские острова.


2. Состояние и перспективы возобновляемых природных источников энергии в мире и в России

2.1 Ветроэнергетика в мире и России

Установленная мощность ВУ в Европе в 1990 г. составляла 324 МВт, наибольшая часть в Дании. По оценкам экспертов мощность ВЭС к 2008 г. в Европе составит 4860 МВт. Главными производителями ВУ в Европе являются Дания, Великобритания, Германия и Бельгия. Дания является ведущей страной в мире по производству и экспорту ВУ, в том числе и в США. По неофициальным данным к 2010 г. в Дании за счет ВЭУ будет произведено до 10% вырабатываемой в стране электроэнергии.

В Германии к 2010г. общая мощность ВЭС по оценкам составит 500 МВт с выработкой 0,2% электропотребления страны. Лидером ветроэнергетики в Германии в последние годы является фирма «Enercon», выпустившая в 2000 году 27% всего объема продукции ветроэнергетики страны.

В Нидерландах освоение ВУ начато с 1976 г. Ветроэнергетической программой предусматривается увеличение действующих мощностей ВУ с 100... 150 МВт (1990 г.) до 1000 МВт (2008 г.), что позволит получить 4...7% от общего энергопотребления. Не стоят на месте голландские производители. Фирма «Enron Wind» установила в Швеции несколько ВЭУ собственного производства.

В Великобритании энергия ветра признана одним из перспективных источников. Правительственной программой по ветроэнергетике предусмотрено увеличить мощность ВЭУ к 2008 г. до 600 МВт, получить в 2008 г. за счет энергии ветра 10% потребляемой в стране электроэнергии, далее довести этот показатель до 20%.

Не отстают от Европы и азиатские страны. Например, в Индии было создано Министерство нетрадиционных источников энергии, которое осуществляет разработку отрасли в целом, планирование инвестиций и меры экономического развития. В настоящее время несколько крупных индийских компаний, таких как «Micon», «Vestas», «Zond» и другие заняты сборкой и производством ВЭУ.

Основу мировой ветровой энергетики составляют ВЭУ, работающие на сети энергосистем. Их доля составляет 99% от суммарной мощности действующего ветроэнергетического парка. Это объясняется тем, что для работы таких установок не требуются дополнительные источники питания.

Доля ВЭУ, применяемых в качестве автономных источников едва превышает 1%. Это объясняется тем, что автономные ВЭУ имеют малую мощность при большое цене. Также, на отдельные ВЭУ не распространяются налоговые льготы государств, поэтому это делает их нерентабельными.

В России допущено наибольшее отставание от передовых достижений зарубежных стран в области освоения ВИЭ именно в ветровой энергетике. В дореволюционной России действовало более 20 тысяч ветряных мельниц общей мощностью 1 млн.кВт.

В настоящее время в РФ выпускаются серийно только агрегаты типа АВЭЦ-6-4М мощностью 2...4 кВт. Кроме того, освоено мелкосерийное производство зарядных ВЭА мощностью 100...250 Вт и водоподъемные ВА с механическим приводом производительностью 1 м3/ч (воды). За последние годы (8 лет) введено в эксплуатацию около 10 тысяч ВУ такого типа. Оценка ресурсов ветроэнергетики показывает, что для энергетического использования пригодны около 8 млн.км2 территории, где среднегодовая скорость ветра превышает 5 м/с. Если использовать только 1% территории для размещения ВЭУ, то их установленная мощность может превысить 300 млн. кВт.

Тормозом развития, внедрения и широкомасштабного использования ветроэнергетики в России является целый ряд причин.

Основные из них - отсутствие государственной позиции и, как следствие, неопределенность государственных целей и приоритетов. До сих пор в стране не приняты общегосударственные и региональные программы развития ветроэнергетики и не созданы государственные органы управления на федеральном и региональном уровнях.

Законодательные барьеры обусловлены отсутствием законов и механизмов, регулирующих развитие и внедрение ВИЗ, а также нормативов, обеспечивающих свободный доступ независимых производителей к электросетям энергосистем.

Экономические барьеры связаны с отсутствием госфинансирования, низкой платежеспособностью населения и организаций, с отсутствием экономических стимулов для вложения инвестиций (налоговых льгот, льготных кредитов) и гарантий возврата вложенных средств.

Научно-технические и профессиональные барьеры обусловлены отсутствием по большинству видов ВИЭ готовых систем энергоснабжения и системы сертификации оборудования, неразвитостью инфраструктуры и ремонтно-эксплуатационной базы, отсутствием квалифицированных кадров, низким уровнем технологических разработок и научно-информационного сопровождения проектов.

Информационные барьеры связаны со слабой осведомленностью населения, руководства и общественности о возможностях, преимуществе и эффективности использования ВЭС и с отсутствием системы пропаганды в СМИ.

Существенным барьером для широкомасштабного внедрения ВЭС является необоснованное мнение об их экономической неэффективности, по крайней мере, в РФ с ее запасами органических, ядерных и водных энергоресурсов.

Но если посмотреть с другой стороны, то в нашей стране есть существенные предпосылки для развития этого вида энергетики, которые обусловлены:

· острой необходимостью обновления устаревших и выработавших ресурс энергетических мощностей страны (до 5% в год от суммарных генерирующих мощностей страны, составлявших к 2005 году около 217 ГВт);

· высокой технической и экономической конкурентоспособностью современных ВЭС с традиционными технологиями энергопроизводства на основе невозобновляемых видов топлива

· высоким уровнем развития ветроэнергетических технологий в мире и возможностями быстрого и эффективного их трансферта и использования в России

· богатейшим сухопутным и морским ветроэнергетическим потенциалом во многих регионах России, высоким уровнем его изученности, а также наличием эффективных отечественных методик быстрого и экономичного проведения технико-экономического обоснования ветроэнергетических проектов.

2.2 Состояние и перспективы мировой гидроэнергетики

Объем генерирующих мощностей ГЭС по всему миру неуклонно рос в среднем на 3 процента ежегодно в течение последних четырех десятилетий. Согласно последним данным специалистов Института политики Земли, в 2011 году ГЭС вырабатывали 3.5 трлн. киловатт-часов электричества. На гидроэнергетику пришлось около 16 процентов мирового производства электроэнергии. Почти все генерирующие мощности сконцентрированы на 45 000 с лишним крупных плотинах. Сегодня гидроэнергетика развита и широко используется в более чем 160 странах мира.

Сейчас крупнейшими производителями гидроэнергии в абсолютных значениях являются Китай, Канада, Бразилия, США и Россия. Однако абсолютный лидер по выработке гидроэнергии на душу населения - Исландия. Кроме нее, этот показатель наиболее высок в Норвегии (доля ГЭС в суммарной выработке - 98 процентов), Канаде и Швеции.

Стоит отметить, что в развитых странах Европы и Америки практически исчерпаны возможности для строительства новых ГЭС. Так что смело можно прогнозировать, что новые большие ГЭС будут строить в основном в Африке, Азии и Южной Америке, так как на других континентах, везде, где только можно построить большую ГЭС, они уже стоят.

Эти выводы подтверждаются тем, что крупнейшие ГЭС мира находятся именно в этих регионах. Так, именно в Азии, в Китае, располагается крупнейшая ГЭС мира «Три ущелья» на реке Янцзы. Мощность этой станции составляет 22,4 ГВт. Кроме того, в Китае ведется строительство крупнейшего по мощности каскада ГЭС. Вторая по величине гидроэлектростанция в мире называется «Итайпу» и стоит на реке Парана, на границе Бразилии и Парагвая. Ее мощность - 14 ГВт. Наконец, «тройку призеров» замыкает гидроэлектростанция имени Симона Боливара, или «Гури», в Венесуэле, на реке Карони. Ее мощность - 10,3 ГВт.

Однако все эти достижения инженерной мысли меркнут перед ГЭС «Гранд Инга». Эта гидроэлектростанция, мощность которой составит 39 ГВт, планируется к сооружению международным консорциумом на реке Конго в Демократической Республике Конго (бывший Заир). У «Гранд Инга» будут пятьдесят две гидротурбины по 750 МВт каждая, плотина высотой 150 метров, будет использоваться часть потока скоростью 26 400 кубометров в секунду. В случае успеха проекта «Гранд Инга» вдвое превзойдет «Три ущелья».

Но все это касается крупных станций. Не стоит забывать и о развитии малых ГЭС, которые по темпу своего развития могут поспорить с их «старшими собратьями». Хотя их удельная мощность не столь велика, все же они играют неоценимую роль в локальном обеспечении человека электричеством.

Строительство микро ГЭС имеет широкие перспективы развития в различных регионах мира с трансграничными речными бассейнами. Малая гидроэнергетика свободна от многих недостатков крупных ГЭС и признана одним из наиболее экономичных и экологически безопасных способов получения электроэнергии, особенно при использовании небольших водотоков.

Преимущества малых ГЭС над крупными:

эффективные технологии;

минимальные площади затопления и застройки;

местное и региональное развитие;

помощь в обслуживании речного бассейна;

электрификация сельских территорий;

небольшой срок окупаемости.

При строительстве и эксплуатации МГЭС сохраняется природный ландшафт, практически отсутствует нагрузка на экосистему. К преимуществам малой гидроэнергетики - по сравнению с электростанциями на ископаемом топливе - можно также отнести: низкую себестоимость электроэнергии и эксплуатационные затраты, относительно недорогую замену оборудования, более длительный срок службы ГЭС (40-50 лет), комплексное использование водных ресурсов (электроэнергетика, водоснабжение, мелиорация, охрана вод, рыбное хозяйство).

В настоящее время нет общепринятого для всех стран понятия малой гидроэлектростанции. Однако во многих странах в качестве основной характеристики такой ГЭС принята ее установленная мощность. К малым, как правило, относятся ГЭС мощностью до 10 МВт (в некоторых странах до 50 МВт).

Традиционная гидроэнергетика будет продолжать расти по мере ввода в эксплуатацию объектов в Китае, Бразилии и других странах, в том числе в Эфиопии, Малайзии и Турции. Одновременно с этим существует огромный потенциал для развития нетрадиционной гидроэнергетики: приливных и волновых проектов, а также небольшого числа проектов, которые не потребуют строительства новых плотин.

Энергия волн также привлекает внимание инженеров и инвесторов. Компании во Франции, Шотландии, Швеции и других странах активно работают для захвата этого рынка. По оценкам Всемирного энергетического совета, во всем мире волновая энергия имеет потенциал для генерации 10000 ГВт - более чем вдвое выше генерирующих мощностей от всех видов современных источников во всем мире.


Гидроэнергетический потенциал рек России оценивается величиной 852 млрд. кВт/ ч. в год. Это так называемый экономический потенциал, пригодный для промышленного использования. По величине гидроэнергопотенциала Россия занимает 2-е место в мире, уступая только Китаю.

Распределение гидроэнергоресурсов по территории страны крайне неравномерно. На Европейскую часть России приходится 25%, на Сибирь 40% и 35% на Дальний Восток. В наиболее промышленно развитой части страны - Центре Европейской части, гидроэнергопотенциал использован практически полностью. Возможности развития гидроэнергетики в Европейской части имеются на Северо-западе и Северном Кавказе. В целом по Европейской части России использование гидроэнергопотенциала составляет около половины возможного.

Необходимо отметить, что в наиболее развитых странах мира процент использования гидроэнергетических ресурсов, как правило, существенно выше. Если же такие страны располагают существенным гидропотенциалом, то они практически полностью обеспечивают себя электроэнергией за счет ГЭС - Норвегия, Швейцария, Австрия и др. Пожалуй, нам нужно брать пример с Норвегии. Она является абсолютным мировым лидером по производству электроэнергии на душу населения - 24 000 кВт час в год, 99,6% из которых производится на ГЭС.

В России наиболее богатым гидроэнергоресурсами регионом является Сибирь. Здесь протекают крупнейшие реки России - Енисей, Ангара Лена и др. На сегодня гидроэнергоресурсы Сибири использованы на 20%. Здесь построены крупнейшие ГЭС России - Красноярская, Братская, Усть-Илимская, Саяно-Шушенская. На базе этих ГЭС возник мощный промышленно развитый регион, основу которого составили предприятия с энергоемкими производствами: металлургические, химические, лесоперерабатывающие и др.

Наименее освоены гидроэнергоресурсы Дальневосточного региона. Из крупных ГЭС здесь действуют только Зейская и Колымская ГЭС, заканчивается строительство Бурейской. Потенциал региона освоен только примерно на 4%.

Однако чтобы заполнить эти «недостатки», в умеренных темпах развивается строительство новых станций на всех пригодных территориях нашей страны. В ближайшие 5 лет планируется ввести наибольший объем мощностей ГЭС с помощью ряда строящихся установок: Бурейской ГЭС, Богучанской ГЭС, Усть-Среднеканской ГЭС, Светлинской ГЭС, Ирганайской ГЭС и др.

Смело можно сказать, что большинство станций находятся на стадии завершения строительства, а некоторые даже в настоящее время эксплуатируются.

Следующим этапом планирования должна стать среднесрочная перспектива, ориентированная на 2020 - 2030 годы. Здесь уже на первый план должны выйти соображения общегосударственного значения. Именно государство должно принять основополагающее решение - необходимо ли в данном регионе развитие энергетики или нет? Решение это должно приниматься с учетом всестороннего анализа условий существования региона - экономических, социально-политических, экологических и др. Если принято положительное решение, то есть развитие энергетики является безальтернативным, то далее в действие вступают механизмы выбора оптимальной структуры энергообеспечения. Это могут быть разные типы генерирующих мощностей, конфигурация линий электропередач и пр. Здесь уже могут быть задействованы рыночные методики сравнительной эффективности, позволяющие выделить наиболее экономически эффективные объекты из числа рассмотренных. Но формальные показатели абсолютной эффективности даже самого оптимального из них могут оказаться отрицательными. В этом случае надо говорить об общественной эффективности, которая будет получена не за счет продажи электроэнергии. Она определится развитием региона, повышением уровня жизни, созданием благоприятных условий жизни для населения и обеспечит прочие условия.

В России можно выделить определенные зоны предпочтительного развития гидроэнергетики. Это районы с наличием гидропотенциала, то есть рек с большими перепадами высот. В России так сложилось, что именно в таких местах экономика развита слабее, чем в равнинных районах центра европейской части, где неиспользованного гидропотенциала практически уже нет. Поэтому в ряде случаев возникает вопрос о целесообразности передачи энергии ГЭС, расположенных в малообитаемых и труднодоступных районах в экономически более развитые районы.

К числу таких проектов относится Эвенкийская ГЭС. Эта ГЭС мощностью 12 млн. кВт может быть построена в самом малонаселенном районе России, в Эвенкии, на реке Подкаменная Тунгуска. Энергию этой ГЭС в объеме 46 млрд. кВт/ч в год предполагается передавать в европейскую часть России и район Тюмени. В случае реализации эта ГЭС вошла бы в тройку крупнейших ГЭС мира.

Весьма перспективным для строительства ГЭС является район бассейна реки Амур. Если в основном русле реки строительство ГЭС проблематично из-за равнинной местности, то на ее притоках - реках Зея, Бурея, Шилка и др. могут быть построены ряд достаточно эффективных ГЭС.

В целом, можно сказать, что для России перспективы развития ГЭС огромны. Не стоит забывать, что мы обладаем одних из самых богатых водных ресурсов в мире. И не смотря на все трудности развития этой отрасли, нужно создавать определенные программы совершенствования столь важной отрасли, и заниматься этим должно государство, которое, все-таки, не столь пристально уделяет внимание своим прямым обязанностям.

2.4 Солнечная энергетика в мире и России

Каждый день на Землю поступает огромное количество энергии, которое может покрыть все потребности современного мира. Если бы человек научился получать хотя бы 0,5% этой энергии, то можно было покрыть все затраты мира в электричестве и тепле. Но из-за природных барьеров мы не можем этого сделать. Однако в некоторых странах гелиоэнергетика занимает одно из ведущих мест. Один из примеров - Швейцария. Созданная в стране программа «Солар-91» помогает расширять ареал действия гелиоэнергетики. В стране построено около 2500 солнечных фотоустановок, которые помогают решить энергетические и экологические проблемы государства.

Несмотря на относительное непостоянство солнечной энергии, ее «добыча» активно развивается в последние годы. В США построены 8 крупных электростанций модульного типа, мощностью около 470 МВт. Энергия от них идет на обеспечение штатов. Мощность произведенных фотоэлектрических преобразователей в мире достигает около 300 МВт в год. В настоящее время в мире работает более 1,5 млн. гелиоустановок теплового типа.

Разрабатывают и необычные проекты гелиостанций. Например, в Австралии принят план строительства солнечной башни, высотой 1 км. У подножия будет располагаться огромная семикилометровая в диаметре теплица. Воздух, нагретый в теплице, будет идти по трубам, вращая ветродвигатели. Мощность такой станции оценивается в 200 МВт, а стоимость в 300 млрд. $.

Таким образом, гелиоэнергетика постепенно получает одно из приоритетных мест в энергетическом развитии многих стран. Государства, в свою очередь, принимают законы, которые оказывают существенную поддержку развитию данной отрасли. Без принятия таких законов развитие солнечной энергетики гасло бы на начальных стадиях развития.

В России практическое использование солнечной энергии крайне ограничено, несмотря на широкие исследования, которые проводились и проводятся в этом направлении. В стране существует лишь несколько производств солнечных модулей, которые являются основой солнечных фотоэлектрических установок (СФЭУ) различных типов, и очень ограниченный сегмент потребителей, готовых приобретать СФЭУ. Осведомленность о существовании и возможностях солнечной энергетики находится на низком уровне, отсутствуют законодательные нормы, поддерживающие производство и использование СФЭУ.

Сегодня возникает одновременно целый ряд проектов по созданию и развитию производства СФЭУ в России. Проект строительства завода по производству солнечных модулей на базе передовой тонкопленочной технологии в Чувашской Республике (г. Новочебоксарск), реализуемый компанией «Хевел».

Российская Федерация обладает огромным потенциалом использования солнечной энергии. Регионы юга России, Дальнего Востока и Забайкалья отличаются высоким уровнем солнечной радиации, сравнимым с южными регионами Европы, где солнечная энергетика уже получила интенсивное развитие.

К факторам, которые в различной степени влияют на развитие отрасли в РФ можно отнести:

Климатические условия. Не стоит забывать, что значительная часть нашей страны располагается в северных широтах, где значение инсоляции очень мало.

Государственная поддержка. Наличие законодательно установленных экономических стимулов к развитию солнечной энергетики оказывает решающее значение на ее развитие. Среди видов государственной поддержки, успешно применяющихся в ряде стран Европы и США, можно выделить: льготный тариф для СЭС, субсидии на строительство СЭС, различные варианты налоговых льгот, компенсация части расходов по обслуживанию кредитов на приобретение СФЭУ.

Стоимость СФЭУ. Сегодня солнечные электростанции являются одними из наиболее дорогих используемых технологий производства электроэнергии. Однако по мере снижения стоимости 1 кВт/ч выработанной электроэнергии солнечная энергетика становится конкурентоспособной. От снижения стоимости 1Вт зависит спрос на установки. Снижение стоимости достигается за счет повышения КПД, снижения технологических затрат и снижения рентабельности производства.

Экологические нормы. На рынок солнечной энергетики положительно может повлиять ужесточение экологических ограничений и штрафов. Совершенствование этих механизмов может дать новый экономический стимул для рынка СФЭУ.

Важным фактором развития СЭ является сравнение себестоимости электроэнергии, полученной от СФЭУ, со стоимостью электроэнергии, полученной из традиционных источников. Показателем перспективности СЭ, а соответственно и экономической целесообразности применения СФЭУ, в регионе является достижение равенства этих стоимостей.

В итоге можно сказать, что нам есть, куда расти. Гелиоэнергетический потенциал нашего государства велик, нужно только с умом подойти к развитию данной отрасли энергетики.

2.5 Развитие биоэнергетики в мире и России

Один из наиболее перспективных видов возобновляемого энергетического сырья в России и мире является биомасса. Пока же её ресурс задействован в очень небольшой степени. Однако, по факту, около 10% всего топлива в мире приходится на древесину. С одной стороны, это успех в развитии ВИЭ. Но с другой стороны, количество потребляемой древесины превосходит ее ежегодный прирост. Также древесные ресурсы используются крайне не продуктивно. Ведь около 50% сырья идет на отходы. Это одна из главных проблем, над которыми следует призадуматься.

В США действуют правительственные программы поддержки роста интенсивности лесного хозяйства. Лесничие штатов помогают частным владельцам в вопросах многостороннего использования леса, используются прямые субсидии на развитие биоэнергетики. Уровень субсидий на переработку неделовой древесины в США таков, что фактическая себестоимость производства топливных гранул составляет всего 3 доллара против 40-50 долларов в России.

Среди разных видов биотоплива в последние годы большим вниманием пользуется древесный уголь. Возможно многофункциональное использование этого продукта - в качестве топлива, сорбента, исходного сырья для производства кристаллического кремния и материала, повышающего плодородие почв.

Об эффективности внесения древесного угля в почву заговорили несколько лет назад. Этот уголь получил наименование «биочар», применение которого уже называют новой «зеленой революцией», которая может спасти человечество от вновь надвигающегося голода. В России эксперименты с биочаром проводили ещё в середине XX века, и они доказали его эффективность, но пока наша страна остаётся в стороне от развития производства этого продукта.

Также спросом в мире пользуется торфяное топливо. Оно экологически чище угля и топочного мазута. В выбросах котельных, работающих на торфяном топливе, содержится значительно меньше диоксида серы, основной причины образования и выпадения кислотных дождей, и более чем в 10 раз меньше других вредных выбросов. Торфяная топливная продукции может производиться в виде фрезерной крошки, кускового торфа, брикетов, пеллеты, формованного заводского топлива. Вид продукции, получаемой из торфа, зависит от сырьевой базы и от требований к сжиганию топлива. Кроме того, организация добычи и переработки торфа - легко диверсифицируемое производство.

В последние двадцать лет торфяная промышленность России переживала резкий спад: в 1991 году общее производство продукции из торфа составляло 1,3 млн. тонн, но к 2005 г. оно сократилось до 7 тыс. тонн - почти в 200 раз. Однако, в последние пять лет, обозначилась смена тенденции, и к 2010 году общий объем продукции уже превысил 70 тыс. тонн. В развитии торфяной отрасли инициатива на данный момент принадлежит Кировской, Ивановской, Псковской, Владимирской областям, где торф используется, главным образом, как местный энергетический ресурс. Большой интерес представляет также использование топливных брикетов. Это спрессованный под высоким давлением растительный материал (опилки, торф, солома), который, в результате прессования, приобретает улучшенные свойства.

К сожалению, у использования биомассы в качестве топлива есть свои преграды. Как и в случае с ископаемым топливом, сжигание вызывает образование CO 2 . Однако ископаемое топливо выделяет CO 2 миллионы лет, создавая его избыток в атмосфере. В противоположность, углекислый газ, выделяемый биомассой при сжигании, поглощается растениями. Биотопливо считается "углеродно-нейтральным" и пока оно только позволяет сократить выбросы вредных веществ в атмосферу.

В будущем биомассы могут заменить нефть, газ и уголь во многих областях. Правительства различных стран будут финансировать исследования в области развития биотоплива. Среди вещей, которые предстоит усовершенствовать, - фабрики по очистке биомассы. Такие фабрики будут принимать различные виды биотоплива и создавать постоянный запас для использования в различных областях промышленности. На одной из рафинадных фабрик в качестве основы для ферментации используются сахар в виде целлюлозы и лигнин из растений, в результате получается этанол. В качестве биотоплива может использоваться дерево и различные виды трав. На других рафинадных заводах для стандартизации биомассы используется термохимический подход, превращающий массу в более эффективные жидность или газ.

Исследователи видят будущее биомассы в замене нефти, как источника многих химикатов, используемых в современном мире. Вещи из пластика, краски и клеи можно производить не из нефтепродуктов, а из биомассы.

Подводя итог, можно сказать, что в мире активно ищут способы для получения биоэнергии. Надо признать, что не во всех странах это происходит. Одним из главных факторов торможения является не обеспеченность поддержкой государства развития данной отрасли. Не во всех странах правительство поощряет инициативу в пользу биоэнергетики. Поэтому нужно находить способы расширения отрасли на государственном уровне.


Заключение

В данной работе были рассмотрены виды возобновляемых источников энергии, их классификация и возможности развития в мире и России.

Проведенная работа включала несколько этапов:

На первом этапе был проведен обзор литературных источников в области нетрадиционной энергетики.

На втором этапе были рассмотрены виды и структура ВИЭ, их классификация и тенденции развития.

На третьем этапе был проведен анализ перспектив использования ВИЭ в мире и России.

Таким образом, развитие ВИЭ в мире представляется актуальным и перспективным проектом. Во-первых, развитие и использование ВИЭ благоприятно влияют на экологическую обстановку в мире, которая в последнее время «хромает». Во-вторых, в будущем нехватка традиционных ресурсов может сильно сказаться на рынке, возможно, будет мировой энергетический кризис, поэтому очень важно начать сейчас развивать нетрадиционные источники энергии, чтобы через несколько десятков лет, а может быть и меньше, не допустить экономического коллапса.

Список использованной литературы

1. Биомасса как источник энергии: Пер. с англ. / Под ред. С. Соуфера, О. Заборски. - М.: Мир, 1985.- 368 с.

2. Благородов В.Н. Проблемы и перспективы использования нетрадиционных возобновляемых источников энергии / В. Благородов // Энергетик. - 1999. - №4. - С. 2.

Бринкман, Энди. Физические проблемы экологии / Э. Бринкман; пер. с англ. А.Д. Калашникова; доп. В.В. Тетельмина. - Долгопрудный: Интеллект, 2012. - 287 с.

Ветроэнергетика / Под ред. Д. де Рензо: Пер. с англ.; под ред. Я.И. Шефтера. - М.: Энергоатомиздат, 1982. - 272 с.

Гидроэнергетика: Учебник для студентов высших учебных заведений / В.И. Обрезков, Н.К. Малинин, Л.А. Кароль [и др.].; Под ред. В.И. Обрезкова. - М.: Энергоиздат, 1981. - 608 с.

Городов Р.В. Нетрадиционные и возобновляемые источники энергии: учебное пособие / Р.В. Городов, В.Е. Губин, А.С.Матвеев. - 1-е изд. - Томск: Изд-во Томского политехнического университета, 2009. - 294 с.

Инновационные технологии производства биотоплива второго поколения: научное издание / В.Ф. Федоров и др.; М-во сел. хоз-ва Рос. Федерации. - М.: Росинформагротех, 2009. - 67 с.

Лукутин Б.В. Возобновляемая энергетика в децентрализованном электроснабжении / Б.В. Лукутин, О.А. Суржикова., Е.Б. Шандрова. - М.: Энергоатомиздат, 2008. - 231 с.

Сибибкин М.Ю. Технология энергесбережения: учебник для студентов учреждений сред. проф. образования, обучающихся по группе специальностей «Машиностроение» / М.Ю. Сибибкин, Ю.Д. Сибибкин. - 2-е изд., перераб. и. доп. - М.: Форум, 2010. - 351 с.

Сибикин Ю.Д. Нетрадиционные и возобновляемые источники энергии: учебное пособие / Ю.Д. Сибикин, М.Ю. Сибикин. - М.: КноРус, 2010. - 227 с.

Тарасов, А. Стимулирование освоения нетрадиционных возобновляемых источников энергии: мировые тенденции и Россия / А. Тарасов. // Экономические науки. - 2009.-№5. - С. 176 - 178.

Ушаков В.Г. Нетрадиционные возобновляемые источники энергии: Учеб. пособие для энерг. и технол. спец. вузов / Новочерк. гос. техн. ун-т. - Новочеркасск, 1994. - 120 с.

В этой статье мы расскажем про перспективы и главные барьеры для развития возобновляемых источников энергии в России и за рубежом, а также о возможных путях их преодоления.
Почти каждый деньв прессе появляются сообщения, рассказывающие о новых рекордных прорывах, которые сделаны в альтернативной энергетике. Но столь впечатляющие темпы роста можно во многом объяснить низкой базой, с которой отрасли стартуют, а интерес к этой теме активно подогревается тем, что «зеленая революция» в промышленности и энергетике давно уже стала глобальным мейнстримом. В то же время, рассуждая о настоящих перспективах возобновляемой энергетики, приходится всегда учитывать некоторые ограничения.

Ограничения для «зеленой» генерации

Известен, к примеру, так называемый «германский парадокс». Добиваясь рекордных показателей по наращиванию доли возобновляемых источников энергии в своем энергобалансе, Германия в течение многих лет продолжает оставаться лидером среди стран Евросоюза по выбросам в атмосферу CO2. Немцы,закрывая последовательно атомные электростанции, принялись наращивать импорт угля из России для того, чтобы восполнить недостающую электроэнергию. Образовалась парадоксальная ситуация: стремясь максимально «озеленить» свою энергетику, Германия, наоборот, увеличивала «грязную» угольную генерацию.

Даже в Дании, планирующей к 2050 году перейти полностью на возобновляемую энергетику, все равно продолжаются споры об экономической эффективности в долгосрочной перспективе возобновляемых источников энергии. И можно понять скептиков. В последнее время слишком много можно назвать громких примеров так и не реализовавшихся проектов, которые связаны с возобновляемой энергией.

К примеру, «солнечный гигант» SunEdison (США) был крупнейшей компанией в сфере солнечной энергетики с капитализацией десять миллиардов долларов, но не справилсяс долговыми обязательствами и был вынужден объявить о банкротстве. Еще одна американская компания Aquion Energy, разрабатывавшая для хранения «зеленой» энергии аккумуляторные батареи, в настоящее время распродается по частям и была вынуждена сократить почти весь свой R&D-персонал.

Одним из главных минусов возобновляемых источников энергии является зависимость от экстернальных факторов (наличия солнечных излучений непосредственно ветра и так далее) и нестабильность выработки электроэнергии. Компенсировать перепады, которые возникают, опять же приходится за счет базовой генерации. Решить данную фундаментальную проблему могут позволить технологии, которые связаны с накоплением и хранением энергии возобновляемых источников энергии. Именно создание промышленных накопителей, которые могут аккумулировать очень большие объемы энергии, даст возможность осуществить окончательный и тотальный переход на «зеленую» энергетику.

Накопители энергии


Пока еще не произошло настоящего прорыва в данном направлении. Хотя имеющиеся разработки, находящиеся преимущественно на уровне стартапов, ведутся активно уже не один год.
К примеру, резидент «Сколково» компания WattsBattery создала промышленный образец модульной системы для накопления электроэнергии. Как сообщают разработчики, это мощная батарейка, способная заряжаться от ветра, солнца, или сети и способная снабжать электроэнергией коммерческие здания и частные домовладения. Причем портативная система уже практичнски готова к серийным продажам. Персональную электростанцию Wattsбыла успешно опробовали в этом году во время рекордного полета на воздушном шаре Федора Конюхова. На пятьдесят пять часов полета хватило только одной батарейки, она подавала электричество бесперебойно и даже при температуре минус двадцать пять градусов.

Первое же в России производство высокоэффективных накопителей энергии было запущено в этом году в подмосковных Химках. Если современные литий-ионные аккумуляторы отдают только около 60% электроэнергии, которая была затрачена на их зарядку, то у суперконденсаторов данный показатель превышает 90%. Компания «ТЭЭМП» собирается выпускать в годдо двухсот тысяч суперконденсаторных ячеек. Эти модули уже смогли пройти успешные пилотные испытания в общественном транспорте, на железной дороге и в авиации.

В новосибирском Академгородке компания «Энергозапас» реализует проект по созданию твердотельной аккумулирующей электростанции (ТАЭС), разрабатывая гравитационные накопители энергии на твердых грузах. Причем в качестве груза они используют упакованный грунт. Строительство первой опытно-промышленной электростанции запланировано в 2019 году.

Не отстают от глобальных технологических трендов и наши крупные корпорации и компании, ведущие свои исследования в области разработок уникальных моделей накопителей энергии. Созданием супераккумулятора,который способен работать в промышленных масштабах, занимается, к примеру, Росатом. А «Камаз» и МОЭСК подписали этим летом соглашение о создании передвижного мобильного накопителя на базе грузового электромобиля. На мировом рынке такого рода решения еще были не представлены. Реализация данного проекта даст возможность не только предложить эффективную замену дизель-генераторным установкам, но и будет способствовать развитию в России зарядной инфраструктуры для электромобильного транспорта.

По данным отчетов аналитической компании NavigantResearch, годовой объем мирового рынка накопителей электроэнергии составит в 2025 году около восьмидесяти трехмиллиардов долларов (ежегодные темпы роста - до 60%). Причем почти треть от этого объема будет приходиться на коммерческие и промышленные предприятия, промышленное оборудование, домохозяйства.

Размер российского рынка накопителей, по разным оценкам, может составить от 3 миллиардов долларов до 8 миллиардов долларовдолларов в год. Именно поэтому поддержка формирования в России новой высокотехнологичной отрасли, которая связана с системами хранения энергии и их компонентов, сегодня является очень важной задачей. При этом одним из главных драйверов роста спроса на системы хранения энергии будет увеличение числа «цифровых» производств с повышенными требованиями к качеству электроэнергии.

В России уже есть определенный научно-технический задел по таким направлениям, как суперконденсаторы, гидроаккумулирующие электростанции, литий-ионные аккумуляторы, лифты твердых грузов, маховики. Вместе с этим надо последовательно повышать уровень локализации и наращивать инжиниринговые компетенции и по другим компонентам, которые представлены на рынке пока только в зарубежном исполнении (пневматические системы, термические накопители, воздушно-цинковые аккумуляторы и так далее).

Основные эффекты от применения накопителей энергии в промышленности совершенно очевидны - это снижение потерь от остановки производственной деятельности при перебоях с энергоснабжением, уменьшение стоимости тех присоединения и самой электроэнергии, экономия на расходе топлива и обслуживании дизель-генераторов, развитие соответствующих смежных отраслей. Эффект от создания новой высокотехнологичной отрасли промышленности, обеспечивающей импортозамещение, оценивается в семь-восемьмиллиардов рублей выручки в год при уровне локализации в 50%.

Возобновляемые источники энергии в удаленных регионах


В глобальном масштабе объемы ввода генерации на основе возобновляемых источников энергии в России пока что довольно скромные. Совокупная мощность возобновляемых источников энергии в стране составляет примерно 53,5 ГВт, а без учета гидроэнергетики этот показатель не превышает 2,5 ГВт. Но у каждой технологии своя страновая специфика. И в плане развития альтернативной энергетики Россия обладает одним неоспоримым преимуществом - своей территорией.
Наиболее логичным является использование возобновляемых источников энергии именно в удаленных или энергодефицитных районах, испытывающих зависимость от малоэффективных дизельных генераторов. В стране насчитывается примерносто тысяч изолированных поселений, организовать в которых централизованное энергоснабжение или почти невозможно, или очень дорого.

Так, в селе Менза Забайкальского края была запущена в этом году первая автономная гибридная энергоустановка, состоящая из солнечных модулей, дизельных генераторов и накопителя энергии. Только в Забайкалье более 20 населенных пунктов нуждаются сегодня в стабильном энергоснабжении. Именно в такие районы и должны внедряться лучшие технологии и решения в области альтернативной энергетики.

Аналогичным образом решаются и проблемы энергообеспечения в Арктике. Отечественная промышленность разрабатывает высокотехнологичные решения для развития возобновляемых источников энергии в труднодоступных регионах. Например, компания «ЭлеСи» и специалисты Томского политехнического университета создают «умный» энергокомплекс, способный получать энергию сразу из нескольких источников - солнца, ветра, дизель-генераторов, микро-ГЭС. Установка оснащена солнечной панелью и ветрогенераторами различных видов, которые можно использовать как по отдельности, так и в комплексе. Технология адаптирована для работы в экстремальных условиях и окажется полезной для любых мест, где требуются автономные источники энергии - от крайнего севера до южных пустынь.
В России могут эффективно использоваться и другие перспективные направления альтернативной энергетики. Разумеется, исходя из экономической целесообразности и с учетом региональной специфики.

Например, в Мурманской области по-прежнему действует сооруженная еще в 1960-х годах Кислогубская приливная электростанция мощностью 1,7 МВт. Проекты такого рода выгодно развивать, например, на берегах Охотского моря, где наблюдаются самые высокие приливы в стране. А Камчатка теоретически может стать «российской Исландией» ввиду того, что высочайшая активность термальных вод позволит развивать там строительство геотермальных станций. Главный вопрос тут в решении технологических барьеров.

Еще одним направлением альтернативной энергетики является производство пеллет - топливных гранул из отходов лесной промышленности (в Минпромторге их относят к возобновляемым источникам энергии. - Forbes). Например, в перечень комплексных инвестиционных проектов, получивших государственную поддержку, вошел проект компании «Бионет». В Архангельской области был построен завод по созданию промышленных пеллет мощностью 150 тысяч тонн в год. В феврале 2017 года состоялась первая отгрузка топливных пеллет в Европу для их последующего сжигания в ТЭЦ Парижа.

Роль России на мировом рынке возобновляемых источников энергии


Мировыми лидерами в области энергетического машиностроения в целом по-прежнему остаются США, Германия, Япония, Франция, Италия. Очевидно, что конкурировать с ними на глобальном рынке Россия в обозримой перспективе не может, как и полностью импортозаместить зарубежные решения и технологии. Рынок уже поделен, и основную долю в его структуре в ближайшие годы будут по-прежнему занимать крупнейшие зарубежные компании.

Поэтому главная на сегодня цель - это встраивание российских компаний в глобальные цепочки, сотрудничество с мировыми лидерами, трансфер технологий и дальнейшая локализация производства отсутствующего в России оборудования, в том числе для проектов в сфере альтернативной энергетики.
Активное развитие в последние годы секторов возобновляемых источников энергии позволило подключить к развитию возобновляемой энергетики большое количество отечественных машиностроительных, металлообрабатывающих и электротехнических предприятий. И с каждым годом уровень локализации ключевого оборудования для возобновляемой энергетики будет расти, формируя таким образом новые высокотехнологичные отрасли отечественной промышленности.

Поделиться: