Серебро и его сплавы - серебро и его сплавы - драгоценные металлы и их сплавы - каталог статей - мир драгоценных камней. Большая энциклопедия нефти и газа

Сплавы серебра

В ювелирном деле почти во всех случаях используют сплавы, в которых содержание серебра выше 72 %. Белый цвет серебра с увеличением содержания меди становится все более желтоватым. Если медь составляет 50 % сплава, то сплав становится красноватым, а при содержании 70 % меди имеет красный цвет. Если сплав после литья необходимо получить мягким, то его не следует подвергать закалке, с другой стороны, нагревом до определенной температуры можно достигнуть существенного увеличения твердости. Для эмалирования следует использовать сплавы с высоким содержанием серебра или даже чистое серебро для того, чтобы изделие, на которое наносится эмаль, не расплавилось.

Стойкость сплавов серебро-медь к кислотам почти одинакова. Сплавы серебра легко растворяются в азотной и концентрированной серной кислоте.

Согласно ГОСТ 6836-80 предусматривается 18 серебряных проб. В ювелирной промышленности используются сплавы: 960, 925, 916, 875, 800 и 750 проб.

Все они серебряно-медные, имеют высокую пластичность, ковкость.

Сплавы платины и палладия

В современных ювелирных изделиях платиновый сплав встречается редко, он уступил свои позиции белому золоту. Для некоторых ювелирных изделий используется двухкомпонентный сплав 950 пробы, в состав которого кроме платины входят медь и иридий. Добавка иридия значительно увеличивает твердость сплава.

Палладий пока еще не является общепризнанным как самостоятельный металл для производства, ювелирных изделий, но он имеет хорошие перспективы, так как он дешевле платины, имеет более интенсивный белый цвет, лучшую обрабатываемость, и такую же, как платина, устойчивость на потускнение на воздухе.

Близкие по составу сплавы в разных странах могут иметь различные названия, иногда встречаются “устаревшие” названия, а также используется много сплавов цветных металлов, в которых может употребляться слово “золото”, в то же время золотом не являющееся. Вот некоторые из них.

Сплавы золота и платины и их имитация

· Геразолото - немецкое название 8-10-каратного золота, изготовленного фабричным методом.

· Золото “пинк - английское название очень бледного оттенка золота.

· Американское накладное золото - очень тонко позолоченный томпак.

· Цукатное золото - золото 980 и 1000 пробы.

· Накладное золото - медь с тонким (8 микрон) золотым покрытием.

· Электрон - - природный сплав золота и серебра (39 %).

· Золото “Musiv” - пластинки сульфидного олова с золотым блеском.

· Гранатовое золото - сплав золота 250 и 1000 пробы, применялось в XIX веке в Чехии для изделий с гранатами.

· Палау - североамериканское название “белого золота”. Сплав золота и палладия (8:2).

· Орайде или французское золото - 80 % меди, 15 % цинка, 5 % олова, или 86,13 % меди, 13 % цинка, 0,4 % олова, 0,6 % железа.

· Пинчбек или английское золото - сплав меди (83- 93 %) и цинка.

· Полузолото (немецкое название) - сплав меди (83,7 %), цинка (9,3 %), олова (7 %). Как правило, с позолотой.

· Голдин - сплав меди и алюминия.

· Сусальное золото - очень тонкие латунные листы.

· Симилор - сплав меди (83,7 %), цинка (9,3 %), олова (7 %), желтого цвета

· Штеррометалл - сплав латуни.

· Томпак - сплав меди (90 %) и цинка (10 %), может быть и другое соотношение.

· Оротон - торговое название похожего на томпак сплава.

· Хризокалък или золотая бронза - сплав меди (95- 98 %), цинка (2-5 %). Может быть другого сплава.

· Башбронза - бронза с содержанием 6 % олова, годится для позолоты.

· Алюминиевая бронза - сплав меди и алюминия (9: 1). Английское название ауфин, аурал, ауфор ; - французское название позолоченного на огне серебра.

· Гамильтонметалл (хризорин) - сплав меди (66,7 %), цинка (33, 3 %). Хорошо подходит для золочения.

· Мангеймское золото - сплав меди (83,6 %), цинка (9,4 %), олова. Изделия золотят.

· Мозаичное золото - сплав меди (66 %), цинка (34 %). Имеет оттенок самородного золота.

· Поликсен - название природной платины с другими металлами.

· Платинин - название сплава платины (67 %) и серебра (33 %).

· Плакарт - сплав внешне похож на платину, состоит из палладия (78 %), золота (15 %) и серебра (7 %).

· Белъгика - сплав, имитирующий платину, состоит из железа (74,5 %), хрома (16,6%) и никеля (8,9 %).

· Дюраметалл - сплав меди, цинка и алюминия.

· Платинор - сплав, состоящий из меди (57 %), платины (18 %), серебра (10 %), никеля (9 %) и цинка (6 %). Отличается красивым золотистым цветом.

· Платиновая бронза - сплав никеля и олова с небольшим добавлением платины, иногда добавляют серебро.

· Штеллит - сплав хрома и кобальта, похож на платину.


Серебро принадлежит к группе благородных металлов, весьма устойчивых на воздухе и во влажной атмосфере при обычной температуре. Серебро - пластичный металл, хорошо поддается ковке, легко прокатывается (можно прокатать серебряную фольгу толщиной 0,00001 мм), обладает очень высокой тепло- и электропроводностью.
Товарное серебро выпускается в виде слитков весом от 1 до 40 кг или гранул. Наиболее чистый металл, получаемый в промышленном производстве, содержит 99,99% серебра.
Примеси в серебре сильно влияют на его свойства.
Серебро в расплавленном состоянии сильно поглощает кислород, который выделяется при затвердевании металла, отчего отливки становятся пористыми.
Мышьяк, сурьма, висмут, свинец, олово и магний придают серебру хрупкость; висмут, кроме того, придает серебру серый цвет и вызывает расширение сплава при охлаждении.
Железо резко понижает температуру рекристаллизации серебра, поэтому является вредной примесью: наличие в сплаве 0,05% железа делает серебро настолько хрупким, что его становится невозможно прокатывать.
В чистом виде серебро применяется редко, чаще оно используется в сплавах.
Один из основных компонентов серебряных сплавов - медь; с увеличением содержания ее в серебре возрастает твердость сплава и изменяется цвет от белого до красновато-желтого. Вследствие большой твердости серебряномедные сплавы полируются лучше, чем чистое серебро. Ho недостаток этих сплавов - сильная ликвация при охлаждении. Сплавы меди с серебром (от 20 до 60% серебра) при 600-700° очень хрупкие.
Наряду с медносеребряными применяются сплавы серебра с цинком, кадмием, никелем, алюминием, магнием и оловом. Серебро с цинком легко сплавляется, дает однородный ковкий и вязкий сплав, хорошо поддающийся прокатке и волочению.
Наибольшее применение получило серебро для изготовления припоев и ляписа. Серебро, используемое для изготовления ляписа, должно содержать меди не более 0,002% и сумму свинца и висмута не более 0,1%. При наличии этих примесей в больших количествах ухудшается качество ляписа.
Серебряные припои стандартных марок содержат от 10 до 70% серебра, остальное медь и цинк. Добавка в обычный оловянносвинцовый припой до 3% серебра увеличивает его сопротивление усталости и ползучести.
Серебро, содержащее селен и теллур, не пригодно в качестве анодов для серебрения, так как эти примеси образуют шламы, препятствующие серебрению.
Серебро применяется также в химической промышленности в качестве предохранительного покрытия и в электротехнической промышленности; для контактов и в сплаве с другими металлами - в качестве материала сопротивления.
В серебросодержащих сплавах электросопротивления 10, 13 и 17% марганца: 3, 8 и 9% олова, остальное серебро. Эти сплавы обладают относительно высоким отрицательным температурным коэффициентом и электросопротивлением в холоднокатаном состоянии.
Добавка от 1 до 5% серебра в свинцовые бронзы, используемые для заливки вкладышей подшипников, работающих при высоких скоростях и больших нагрузках, намного удлиняет срок работы подшипников и лучше сохраняет смазку.
Сплавы серебра с оловом (7-10%), кадмием (5-18%)и сплавы серебра с оловом (до 25%), медью (до 6%) и цинком (до 2%) широко применяются в зубоврачебном деле.
Большое распространение в производстве ювелирных изделий и в промышленности получило покрытие серебром. Серебряные покрытия можно наносить сваркой, распылением, плакированием, горячим погружением, электроосаждением, химическим восстановлением, конденсацией и катодным распылением. Наиболее часто применяется плакирование и электроосаждение.
Добавка в нержавеющую хромоникелевую сталь (18% хрома и 8% никеля) 0,2-0,25% серебра повышает сопротивление ее коррозии, особенно в морской воде, улучшает механическую обрабатываемость и уменьшает склонность к наклепу.

Имя:*
E-Mail:
Комментарий:

Добавить

21.02.2019

Благодаря гравировке на ручках стандартную канцелярскую принадлежность можно превратить в уникальный и солидный предмет. Дело в том, что шикарная ручка их металла с...

21.02.2019

Уютный дом – мечта каждого. Особенно, если он построен своими руками. Сколько труда и души вкладывается в строительство, и какая это огромная ответственность, ведь все...

19.02.2019

Одна из самых крупных компаний в Объединённых Арабских Эмиратах, специализирующаяся на обработке металла и его последующей продаже, Dana Group сделала заявление по...

19.02.2019

По мере увеличения стоимости энергоносителей и иных ресурсов, в том числе и трудовых, увеличивается также цена любой изготавливаемой продукции во всех рыночных сферах,...

18.02.2019

При выборе новостройки казахстанцы пользуются не совсем верными критериями: ищут объект в желаемом районе и подешевле. В результате таких поисков процент обманутых...

18.02.2019

Остров Раб расположен на северном побережье страны и привлекает любителей природы своими многочисленными лесами. Это один из самых зеленых островов, который...

18.02.2019

При продаже квартиры в силу ряда причин возникают различные рисковые ситуации. Большая часть продавцов старается продать квартиру подороже и как можно быстрее найти...

18.02.2019

Фирма Blanco трудится на рынке с середины 1920-х годов, производят керамические мойки высочайшего качества, а также продукцию из иных материалов. Главной специализацией...

17.02.2019

Сегодня лучшими ограждающими конструкциями с возможностью передвижения являются автоматические ворота DoorHan. Ими легко управлять, они обладают высокой прочностью и...

14.02.2019

Фирма Bangladesh Steel Re-Rolling Mills, считающаяся самым крупным изготовителем стальных товаров на территории Бангладеш, рассказала о том, что она собирается вложить...

На основе серебра. Один из древнейших материалов. Чистое - мягкий пластичный металл (НВ = 30 кгс/мм2, σв = 15 кгс/мм2, δ = 48%, ψ = 90%),образующий со мн. металлами легкоплавкие эвтектики. Для повышения твердости легируют (рис.). С. с. отличаются высокой % электропроводностью, стойкостью к окислению, однако чувствительны к воздействию серы и ее соединений.

Стойкость к сере повышают добавками магния, индия, кадмия, цинка и др. Из С. с. наиболее широкое применение получили серебро-медные марок СрМ. Содержание меди в них 4÷50%. Увеличение содержания меди снижает т-ру плавления от 927 до 850° С, плотность - от 10,5 до 9,3 г/см3. Сплавы серебра с медью применяют для изготовления слаботочных контактов, ювелирных изделий, для чеканки монет и медалей. С. с, содержащие платиновой группы, отличаются значительной коррозионной стойкостью. Особое место занимают малолегированные (до 1%) внутриокисленные

С. с. с химически активными металлами - магнием, алюминием, кадмием, литием, бериллием и др. Эти сплавы отличаются близкой к серебру электропроводностью, повышенной эрозионной стойкостью и большей (в 1,5-2 раза) мех. прочностью по сравнению с серебром. Из них наиболее широко распространены сплавы серебра с окисью кадмия. Изготовляют эти сплавы литыми, с последующим окислением на воздухе (или в кислороде) и спеканием серебряного порошка с окисью легирующего металла. Применяют их в качестве разрывных и скользящих электр. контактов в слаботочных и средненагруженных электр. цепях (коммутирующих устройствах, радиоаппаратуре, телефонных аппаратах и т. д.).

Некоторые С. с. (марок ПСр) хорошо смачивают металлические поверхности, образуя легкоплавкие эвтектики и плотные паяные швы после затвердевания. Их используют в качестве высокопрочных и вакуум-плотных припоев. Содержание серебра в этих сплавах 15 ÷ 72%, их т-ра плавления 235 ч-ч- 780° С. Сплавы выпускают в виде полос и проволоки. В качестве легирующих элементов используют (16-30%), (1-37%), (1-5%), (8-96%), (5,5-30%), (63-97%), (3-8,2%) и (0,3-2%).

Лит.: Головин В. А., Ульянова Э. X. Свойства благородных металлов и сплавов. (Справочник).В. П. Полякова.

Вы читаете, статья на тему серебра сплавы

Получение поверхностей с заданными свойствами может быть осуществлено при электрохимическом выделении сплавов из двух и более металлов в условиях совместного разряда ионов . Электролитическое осаждение сплавов с каждым годом приобретает все большее значение для различных областей техники . Покрытия сплавами часто оказываются значительно более эффективными, чем изготовление деталей из металлургических сплавов. Электролитические сплавы обладают несколько иными свойствами, чем литые. Их повы-шенная твердость, в частности, может иметь большое значение для изделий, работающих в условиях механического износа .

Коррозионная стойкость электролитических сплавов нередко оказывается более высокой, чем у чистых металлов из-за особого строения осадков сплавов.

Серебрение - один из распространенных видов покрытий. Из драгоценных металлов оно получило наиболее широкое применение в гальванотехнике. Причины столь широкого использования этого металла - в его свойствах: серебро легко полируется, обладает высокой термо- и электропроводностью, характеризуется большой химической стойкостью, высокой (до 95%) отражательной способностью.

Но серебро обладает и рядом существенных недостатков: малой твердостью (60-85 кг/мм 2) и износостойкостью, а также склонностью к потускнению в течение времени, особенно в атмосфере промышленных газов. Химическая активность серебрянных покрытий особенно высока при наличии матовой неполированной поверхности .

Гальваническое осаждение сплавов серебра открывает перспективу получения покрытий с нужными для ювелирной промышленности качествами (высокой износостойкостью и твердостью), а также блестящих сплавов, обладающих повышенной, по сравнению с обычным матовым серебром, устойчивостью к атмосферным воздействиям.

Перспективными контактными материалами, а также материалами, которые могут найти широкое применение в ювелирной промышленности, являются сплавы серебра с сурьмой , никелем , палладием , кобальтом , висмутом , медью .

Сплавы серебра со свинцом , индием и таллием применяются как антифрикционное покрытия.

Совместное осаждение металлов дает возможность выделить в сплав такие металлы, получить которые в чистом виде из растворов не удается. Разработаны электролиты для осаждения сплавов на основе тугоплавких металлов, в частности, сплавов серебра с вольфрамом и молибденом .

Известно, что для совместного разряда двух видов ионов необходимо определенное соотношение активностей ионов в электролите, активностей металлов в сплаве и перенапряжений в условиях их совместного выделения.

Стандартные потенциалы металлов, совместное осаждение которых на катоде представляет практический интерес, могут отличаться более чем, на 2 в.

Наиболее эффективным способом изменения активности ионов является связывание их в комплексы. При этом про-исходит как изменение активности ионов в растворе, так и изменение кинетических условий их разряда, т. е. изменяется равновесная часть потенциала и величина поляризации .

По мнению некоторых исследователей , осаждение металлов из комплексных электролитов происходит путем разряда на катоде свободных ионов металла, образующихся при диссоциации комплексных ионов. Вследствие очень малой концентрации таких ионов возникает значительная концентрационная поляризация.

Другие исследователи полагают, что в процессе разряда непосредственное участие принимают сами комплексные ионы, адсорбирующиеся на поверхности катода. Восстановление этих ионов протекает при более высокой энергии активации, что вызывает большую химическую поляризацию.

Протекание процесса по первому механизму возможно в случае, когда комплексные ионы недостаточно прочны .

Кроме того, разряд простых ионов может происходить также в начале процесса, при малых плотностях тока. С увеличением скорости процесса при достижении потенциала разряда комплексных ионов процесс идет с химической поляризацией.

Е. И. Ахумов и Б. Л. Розен вывели уравнение, показывающее, что при постоянной плотности тока между логарифмом отношения содержания металлов в сплаве и логарифмом отношения концентраций их ионов в электролите должна существовать линейная зависимость:

Следовательно, необходимым условием при осаждении сплавов является постоянство состава электролита, а также рН электролита, изменение которых влияет на состав катодного осадка (сплава).

Так как фазовая структура сплавов в значительной степени определяет их физико-химические свойства, то особый интерес представляет изучение причин, вызывающих образование тех или иных фаз при электрокристаллизации сплавов .

Анализируя имеющуюся литературу, можно сделать вывод, что вопрос этот рассмотрен еще недостаточно полно, часто интервал составов полученных сплавов очень узок, что не позволяет выявить существование отчетливых зависимостей .

Наиболее интересными по своим физико-механическим свойствам являются сплавы, образующие в условиях электроосаждения пересыщенные твердые растворы.

Образование твердых растворов происходит на основе более благородного компонента (в частности, серебра) в качестве растворителя, пересыщение обычно не превышают 10-12% .

В соответствии с закономерностью Н. С. Курнакова у сплавов, образующих твердые растворы, наблюдается резкое увеличение твердости.

Для покрытия серебром и его сплавами применяют только растворы комплексных солей за исключением электролита для получения сплава серебро-селен .

В настоящее время получены двадцать три электролитических сплава серебра (табл. 1) и только десять из них - из нецианистых электролитов |30].

Таблица 1

В промышленности для серебрения применяются почти исключительно цианистые электролиты , известные в течение 140 лет и за это время не подвергшиеся каким-либо принципиальным изменениям.

Цианистые электролиты серебрения характеризуются высокой рассеивающей способностью, ~ 100%-ным выходом по току; осадки, полученные из них, имеют мелкокристаллическую структуру.

К главным недостаткам цианистых электролитов относятся: сложность их приготовления, недостаточная устойчивость, низкая производительность, а также высокая токсичность ,

В связи с перечисленными выше недостатками одной из важнейших задач современной гальваностегии является замена цианистых электролитов неядовитыми, а также интенсификация процессов серебрения. Кроме того, до сих пор практически еще не решена задача получения блестящих, не тускнеющих со временем покрытий.

Рассмотрим подробнее некоторые электролиты (см. табл. 2) для получения сплавов серебра.

Сплавы, полученные из пирофосфатного электролита, обладают высокой микротвердостью (230 кг/мм2), их износостойкость в 15 раз выше, чем у чистого серебра. Покрытие имеет достаточную прочность сцепления со сталью даже без применения подслоя. Сравнительные данные сплавов, полученных из пирофосфатных и цианистых электролитов, говорят о том, что свойства сплава, полученного из цианистого электролита, несколько хуже.

Таблица 2

№ п/п Состав электролита, г/л Режим электролиза, Д к, а/дм 2 , o C и т.д. Состав сплава (вес.% легирующего компонента) Твердость, кг/мм 2 Литературная ссылка
Компоненты Содерж. г/л
1 Ag (мет.)
Cu (мет.)
K 4 P 2 O 7 (своб.)
pH
6 - 7
14 - 15
100
11 - 13
Д к =0,5 - 0,7
t = 20 o C
η r = 95%
до 15% 230
2 Ag (мет.)
Cu (мет.)
Трилон Б
NH 4 OH дл pH
1 - 6
10 - 12
120 - 140
8 - 9
Д к =0,5 - 1,5
t комн.
η r = 50%
- 230
3 Ag (мет.)
Cu (мет.)
Трилон Б
KOH дл pH
1,7 - 5,4
17 - 20,8
100 - 120
8,5 - 9,5
Д к =0,5
Д к =3,0
t комн.
η r = 45 - 50%
15%
82%
60 - 70%
Max -
230

4 AgSCN
NiSO 4 .7H 2 O
Na 2 SO 4 .10H 2 O
1 - 50
8 - 12
100
Д к =1,2 ма/см 2
t=60 - 70 o C
4 - 20% -
5 Σ(Ag + Ni)
K 4 P 2 O 7
6
150
Д к =0,4 - 0,5
t =18 - 25
η r = 60-70% Перемешив.
Сплавы получены в широком диапазоне 180 (20% ат. Ni)
480 (80-86% ат. Ni)
6 Pd (мет.)
Ag (мет.)
Трилон Б
(NH 4) 2 CO 3
NH 3 (своб)
pH
0,15-0,20 моль/л
0,02 - 0,03
0,12 - 0,20
0,1 - 0,20
0,25 - 0,50
9,0 - 9,5
Д к =0,07 - 0,15
Д к =0,3 - 0,5
t= 20 - 40
η r = 90-95%
15-25%
40 - 50%
220 - 280
7 Ag (мет.)
Pd (мет.)
K 4 P 2 O 7
KCNS
0 - 14
10 - 17
20 - 70
130 - 180
Д к =0,4 - 0,5
t = 18-20
2 - 8% -
8 AgSCN
K 2 Pd(CNS) 4
KCNS
0,1 M
0,1 M
2M
- - -
9 Ag (мет.)
Pt (мет.)
LiCl
HCl (кислота)
3,4
5,1
500
10
Д к =0,2 - 0,25
t = 70 o C
η r = 20-80%
0 - 60 150-350%
10 AgNO 3
K 2 WO 4
(NH 4) 2 SO 4
(CHOH . CO 2 H)
pH
35
30
150
12
8 - 10
Д к = 0,8
η r = 106%
до 2% вес. H v в 1,5-2 раза больше чистого электролита серебрения
11 Ag (мет.)
KCN (своб.)
K 2 CO 3
Sb 2 O 3 (порошок)
KNaC 4 H 4 O 6 . 4H 2 O
40 - 50
50 - 60
до 70
20 - 100
20 - 40
Д к = 0.7 -0,8
t = 20 ± 4
0,5 - 0,6% 130 - 140 кгс/мм 2
12 Ag (мет.)
Sb (мет.)
К 4 / = 2,5 - 0,5
1 н.
1 ммоль/л
5 ммоль/л
8 мл/л
Д к = Д a = 2 - 6 ма/см 2
t = 20
0,13 - 4,5 ат.% -
14 Ag (мет.)
Bi (мет.)
K 4 P 2 O 7 (своб.)
KCNS (своб.)
К 4 ).

Повышение плотности тока на 1 а/дм 2 увеличивает процент содержания сурьмы в осадке на 0,5%. Применение плотности тока больше 1 а/дм 2 возможно при перемешивании и температуре электролита 50-60 o С, что при наличии в электролите сравнительно большой концентрации свободного цианистого калия крайне нежелательно.

Н. П. Федотьевым, П. М. Вячеславовым и Г. К. Буркат предложен нецианистый электролит для осаждения сплава серебро-сурьма с содержанием сурьмы 2-2,5%. За основу данного электролита взят синеродистороданистый электролит серебрения. Сплав представляет собой ряд твердых растворов, отмечается наличие в нем интерметаллических соединений состава АgSb и Аg 3 Sb. При содержании в осадке 8-10% сурьмы были получены зеркально-блёстящие осадки. В качестве депассиватора анодов применяется роданид калня. Анодная плотность тока не должна быть меньше катодной, так как в противном случае будет происходить химическое растворение анодов. Свойства сплава мало чем отличаются от свойств сплава, полученного из цианистого электролита, Данный электролит значительно менее токсичен, чем описаный выше.

Из растворов, содержащих 20 - 30 ммоль/л Н 2 SеО 3 , 2,5--10 ммоль/л АgNО 3 , подкисленных в зависимости от концентрации АgNО 3 15 - 60 мл/л азотной кислоты получены компактные осадки сплава серебро - селен. Состав и качество осадков зависят от соотношения Н 2 SеО 3 и АgNО 3 в католнте, их суммарной концентрации, температуры и плотности тока.

На серебряном катоде были получены компактные блестящие осадки, толщиной до 1 мкм состава от 0,13 до 4,5 ат.% селена; на платиновом катоде были получены только матовые осадки состава от 2,4 до 4,4 ат.% селена. Тонкие слои сплава селена с серебром обладают полупроводниковыми свойствами.

Опыты проводились в сосуде из оргстекла с диафрагмой из поливинилхлоридной ткани, с платиновыми анодами; катодами служила платиновая пластинка или медная (иногда платиновая), электролитически покрытая серебром.

Результаты работы очень интересны, так как это первый некомплектный электролит для получения сплавов серебра, но получение сплава серебра с селеном пока еще находится в стадии лабораторных разработок.

Для осаждения сплава серебро - висмут с 1,5 - 2,5 вес,% висмута предложен пирофосфатносинеродистый электролит. Сплав обладает высокой микротвердостью (190 кг/ мм 2), износостойкость его в 3 - 4 раза выше, чем чистого серебра.

При совместном осаждении серебра и висмута имеет место деполяризация разряда обоих компонентов сплава, увеличение предельных токов разряда серебра и висмута в сплав. Висмут осаждается в сплав с образованием твердого раствора висмута в серебре до 1,3 - 1,5 ат.% (по сравнению с 0,33 ат % висмута при температуре выше 200 o С по диаграмме состояния)

Электролит для получения сплава приготавливался на основе железистосииеродистого электролита путем добавления к нему пирофосфатного комплекса висмута (КВiP 2 О 7).

Электролит чувствителен к иону NO - 3 , поэтому железистосинеродистый электролит серебрения приготавливали из хлористого серебра, что, несомненно, является достаточно сложным. Осадки удовлетворительного качества получались в очень небольшом интервале рН электролита от 8,3 до 8,7.

В литературе имеются упоминания о возможности осаждения сплава серебро-висмут из комплексного аммиакатносульфосалицилатного электролита, но конкретных данных по составу электролита и составу осадков авторы не приводят.

Из всех вышеприведенных электролитов широкое промышленное применение нашел пока только пирофосфатно-роданистый электролит для получения сплава серебро-паладнй (табл. 2). В литературе недостаточно освещены еще вопросы получения зеркально-блестящих сплавов серебра, и особенно, из нецианистых электролитов, хотя именно такие покрытия вызывают повышенный интерес из-за их отличного декоративного вида и повышенной коррозионной стойкости. Сочетание обоих этих качеств является особенно ценным для ювелирной промышленности.

Задача состоит в разработке достаточно скоростных нетоксичных электолитов для осаждения блестящих сплавов серебра.

ЛИТЕРАТУРА

1. Скирстымояская Б. И. Успехи химии. 33,4 , 477(1964).

2. Федотьев Н. П., Бибиков Н. Н. Вячеславов П. М., Грилихеc С. Я. Электролитические сплавы. Машгиз, 1962.

3.Зытнер Л. А. Диссертация (к. т. н.). ЛТИ им. Ленсовета, 1967.

4. Ямпольский А. М. Электролитическое осаждение благородных и редких металлов. «Машиностроение», 1971.

6. Мельников П. С., Саифуллин Р. С., Воздвиженский Г. С. Защита металлов, т. 7, 1971.

7. Патент ФРГ, с 23 в.

8.Буркат Г. К., Федотьев Н. П., Вячеславов П. М. ЖПХ, ХLI, вып. 2, 427, 1968.

9. Кудрявцев Н. Т., Кушевич И. Ф., Жандарова И. А. Защита металлов, 7, 2, 206, 1971

10. Агарониянц А. Р., Крамер Б. Ш. др. Электролитические покрытия в приборостроении. Л., 1971.

11. Буркат Г. К., Федотьев Н. П. и др. ЖПХ, ХLI, 2, 291 - 296, 1968.

13. Вячеславов П. М., Грилихес С. Я. и др. Гальванотехника благородных и редких металлов. «Машиностроение», 1970.

14. Brenner A. Electrodeposition of Alloys, N.-J.-L., (1963)

15. Избекова О. В., Кудра О. К., Гаевская Л. В. Авт. свидетельство, СССР, кл. 236 5/32, № 293060, заявл. 10/Х 1969.

16. Струиина Т. П., Иваиов А. Ф. и др. Электролитические покрытия в приборостроении. 83, Л., 1971.

17. Кудрявцева И. Д., Попов С. Я., Скалозубов М. Ф. Исследования в области гальванотехники (по материалам межвузовского научного совещания по электрохимии), 73, Новочеркасск, 1965

18. Фрумкин А. Н., БагоцкиЙ В. С., Иофа 3. А., Кабанов В. Н. Кинетика электродных процессов. Изд. МГУ, 1952.

19. Ваграмян А. Т. Электроосаждснне металлов. Изд. АН СССР, 1950.

20. Кравцов В.И. Электродные процессы в растворах комплексов металлов, ЛГУ, 1959.

21. Le Blanc M., Jchick J. Z. phus. chem., 46, 213, 1903.

22. Левин. А. И. Тезисы докладов научно-технической конференции по теории и практике использования в гальванотехнике неядовитых электролитов. Изд. Казанского ун-та, 1963.

23. Андрющенко Ф. К., Орехова В. В., Павловская К. К. Пирофоефатные электролиты. Киев «Техника», 1965.

24. Ахумов Е. И.. Розен Б. Л. Доклады АН СССР, 109, № 6, 1149, 1956.

25. Буркат Г. К.. Диссертация(к. т. п.). ЛТП им. Ленсовета, 1966.

26. Пацаускас Э. И., Яиицкии И. В., Ласавичене И. А. Тр. АН Лит. ССР, Б., № 2(65), 61 - 7!, 1971.

27. Канкарис В. А., Пиворюнаите И. Ю. Химия и химическая технология. Научные труды вузов Лит. ССР, № 3, 1963.

29. Дубяго Е. И., Тертышная Р. Г., Осаковский А. И. Химическая технология. Республиканский межвед, тематмч. паучно-техн. сб., вып. 18, 8, 1971

30. Krohn and Bohn C, W. Plating, 58, № 3, 237-241, 1971.

32. Фантгоф Ж. Н., Федотьев Н. П., Вячеславов П. М. Покрытия драгоценными и редкими металлами. Материалы семинара, 105, М., 1968

33. Кудра О. К., Избекова О. В., Гаевская Л. В. Вестник Киевского политехнического ин-та, № 8, 1971.

34. Рожков Г. А., Гудпн Н. В. Труды Казанскою химпко-технологич. ин-та, в. 36, 178, 1967.

35. Грилнхес С. Я., Исакова Д. С. Всесоюзная научная конференция. Пути развития и последние достижения в области прикладной электрохимии (10-12 ноября 1971 г.), Л., 1971.


Чистое серебро – металл невероятно красивый, но не очень практичный. Серебро высшей пробы мягковато, легко царапается, быстро теряет глянец. Ажурные детали ювелирных изделий из чистого серебра при интенсивной носке и неаккуратной чистке даже мягкими абразивами теряют рельефность, сглаживаются. В результате серебряное украшение утрачивает выразительность. Снижается его привлекательность и художественная ценность.

Быть может, для изготовления ювелирных украшений есть смысл использовать сплавы с легированным серебром? Есть, и немалый – уверены мастера всего мира. Вот только процент лигатурных включений в серебряные сплавы у всех разный. Кто-то считает 5% добавок достаточными, а кто-то смело прибавляет к драгоценному металлу до 50% бог весть каких лигатур – и громко нахваливает свой товар.

Потому и пришлось властям ввести стандарты пробирования сплавов благородных металлов. Только так удалось прекратить произвол самодеятельных мастеров, охочих до получения сверхприбыли.

Некоторые отечественные и зарубежные пробы серебра

В целом российская система пробирования серебра соответствует международным нормам. Трехзначное число – номер пробы – отражает точное количество граммов драгоценного металла в килограмме ювелирного сплава.

Лигатурой в серебряных сплавах чаще всего является медь: металлы «дружат» между собой, отлично смешиваясь, прекрасно сплавляясь, а главное, сообщая друг другу множество полезных свойств.

Добавка в лигатуру кадмия резко удорожает изделие, заметно повышая при этом выразительные свойства металла. Вместо меди (или вместе с медью) к серебру могут примешиваться алюминий, цинк, никель. Однако общепринятым ювелирным стандартом является сплав серебра с медью.

Минимально допустимой считается 750-я или 800-я пробы. При этом в странах бедного юга с успехом изготавливают украшения из серебра 600-й пробы.

Кстати говоря, нередко рыночные торговцы Юго-Востока настойчиво предлагают нашим туристам серебряные безделушки заметно красного оттенка, утверждая при этом: металл изделия – качественное серебро полноценной 600-й пробы.

На самом деле покраснение серебряного сплава говорит о том, что количество меди в изделии просто зашкаливает. Красноватым сплав становится уже тогда, когда соотношение серебра и меди паритетно (по 50%). Чем больше меди – тем краснее отлив.

Есть все основания полагать, что внешний вид таких изделий сильно страдает в течение минимального времени пользования, ведь даже 720-я проба серебра означает: украшение желтовато цветом, образование окисной пленки происходит быстро...

Тем не менее, серебро 720-й пробы в отечественной ювелирной практике используется: как припой между высокопробными деталями, как материал для застежек и замочков, пружинок, игл и т.п.

Серебро 800-й (и даже 750-й) пробы считается пригодным для изготовления столовых приборов, солонок, масленок и прочей посуды. Правда, такое серебро требует постоянного ухода – то есть периодического очищения от окисной пленки.

Немного легче живется владельцам столового серебра 875-й пробы. Это все еще низкопробный сплав, однако из него уже можно изготавливать не только посуду и столовые приборы – салфеточные кольца, рюмки, бокалы и разливочные емкости, пепельницы – но и интерьерные украшения.

Хорошим столовым серебром заслуженно считается сплав 916-й пробы. Именно этот сплав используется для изготовления наборов, украшенных эмалевым покрытием или позолотой.

Знаменитое стерлинговое серебро – это серебряный сплав 925-й пробы. Стерлинг – древняя (ΧΙV века) английская монета. Принято считать, что серебро, шедшее на чеканку стерлингов, было наиболее качественным. Стерлинговое серебро и сегодня считается наилучшим материалом для изготовления украшений, предметов искусства и быта.

Применяемое в ювелирной практике серебро 960-й пробы не имеет внешних различий с чистым серебром. Изделия из этого сплава отличаются высочайшими художественными достоинствами, но в носке требует особо бережного отношения. Пластичность мягкого металла нисколько не способствует долговечности таких украшений.

Серебро 999-й пробы в большом почете у жителей Дальнего Востока. Японцы, давно и прочно уверовавшие в тесную взаимосвязь чистого серебра и Луны, населенной милостивыми к людям божествами, с охотой покупают украшения из серебра 1000-й пробы.

Система проб металлов:
Металл Метрическая Золотниковая Каратная
Золото 375 36 9
Золото 500 48 12
Золото 583 / 585 56 14
Золото 750 72 18
Золото 958 92 23
Золото 999 96 24
Серебро 750 72 18
Серебро 800 - -
Серебро 875 84 21
Серебро 916 88 22
Серебро 925 - -
Серебро 960 - -
Серебро 999 96 24
Платина 950 - -
Палладий 500 - 12
Палладий 850 - -

Прагматичные французы всего более любят серебро 800-й пробы – в то время как остальные европейцы предпочитают покупать изделия из серебряного сплава пробы 935.

Виды серебра

Разноцветным золотом уже никого не удивишь. Серебро же выпускается в единственной цветовой вариации – белой! Но все-таки благородный металл бывает разным.

Стерлинговое серебро бело, прочно, не склонно к почернению. Цвет его характеризуется как ослепительный, а качество – как эталонное. Черненое серебро – продукт применения особых ювелирных технологий, связанных с созданием расплавов черного цвета.

Черненые серебряные украшения производят впечатление старинных, считаются магически сильными и превозносятся как амулеты и обереги. Современные технологии позволяют полноценное чернение заменять быстрым и неглубоким оксидированием. Новое оксидированное серебро неотличимо от серебра черненого, но сохраняет высокие эстетические кондиции не так долго.

Филигранным серебром зовутся изделия ажурные, выполненные с выделением мельчайших деталей. По сути, филигранное серебро – это кружево, сплетенное из тонких серебряных проволочек и либо напаянное на фон, либо помещенное в оправу.

В последние десятилетия стало популярным матовое серебро. Микрошероховатости на поверхности изделий создаются путем обработки серебра специальной жидкой взвесью химически активных ингредиентов.

Имитации серебра

Имитации серебра – вовсе не обязательно подделки драгоценного металла. Мельхиор и нейзильбер создавались как недорогая замена дорогому материалу. Серебряная поталь – тонкая фольга из алюминиево-цинкового сплава – используется для облицовки неметаллических скульптурных форм с целью придания им серебристого блеска.

Мельхиор – известный с доисторических времен сплав меди и никеля с небольшими включениями железа и марганца (или без них). Столовые приборы из мельхиора долго считались достойной заменой серебряным ложкам и вилкам, однако теперь признано: никель вреден для организма.

Нейзильбер – разновидность мельхиора с примесью цинка. Сплав недорог, но для изготовления столовых приборов пригоден лишь условно: если ложку из нейзильбера не покрыть слоем натурального серебра, еда приобретет металлический привкус.

Имитации серебра существуют официально, на законных основаниях. Поддельное серебро – это сплавы, создаваемые для злонамеренной имитации природного серебра. В состав смеси нередко входит немного серебра и даже золота (хотя основой является все тот же нейзильбер), а также железо.

Из поддельного серебра изготавливаются ювелирные изделия, чеканятся фальшивые инвестиционные монеты, отливаются слитки небольшой массы – с целью активной реализации через интернет.

Особым мастерством в подделке серебра «славятся» китайцы. Многие покупатели почему-то уверены, что пробирование серебряных изделий не обязательно, и потому наличие так называемых именных или фирменных клейм, по их мнению, равнозначно наличию оттиска с пробой. Китайские «специалисты» настолько поднаторели в фальсификации серебряных сплавов и клейм, что не стесняются выпускать в оборот не слишком точные копии продукции известнейших брендов.


Продавцы бижутерии нередко применяют выражение «тибетское серебро», говоря о высоком процентном содержании природного серебра в сплаве. На самом деле речь идет о хорошо знакомом нейзильбере, действительно (чаще – мнимо) обогащенном настоящим серебром.

В лучших образцах так называемого тибетского серебра содержится до 30% драгоценного металла. В худших – серебра не обнаруживается вовсе.

Мошенниками введено в оборот понятие «ленинградского серебра». Без вины виноватыми оказались предприятия петербуржской фирмы, выпускающей посеребренную латунную бижутерию. Преступники скупают весьма качественную продукцию, оснащают украшения рельефным клеймом, напоминающим пробирный штамп, навешивают фальшивые ярлыки и продают изделия как серебряные. На самом деле никакого специального «ленинградского серебра» не существует в природе!

Как определить подделку?

В домашних условиях определить подлинность серебряного изделия и соответствие пробы действительному качеству металла очень сложно. Распространенные советы рекомендуют прислушиваться к чистоте звона приобретаемого серебра, проверять его на твердость и теплопроводность, воздействовать на сплав доступными в быту химикатами.

Выполнение любой из рекомендаций не дает достоверного результата. Выход один – покупать серебро нужно только у авторитетных поставщиков клейменных государственной пробирной палатой ювелирных изделий. Все остальные способы приобретения серебра не дают уверенности в справедливости сделки.

Поделиться: