Тепловой аккумулятор. Как накопить и сохранить энергию из возобновляемых источников

Источник фото - сайт http://www.devi-ekb.ru

Используя накопители тепловой энергии можно экономически эффективно сместить потребление гигаватт энергии. Но на сегодняшний день рынок таких накопителей катастрофически мал, по сравнению с потенциальными возможностями. Основная причина кроется в том, что на начальном этапе зарождения систем аккумуляции тепла, производителями уделялась мало значения исследованиям в этой области. Впоследствии производители в погони за новыми стимулами привели к тому, что технология испортилась, а люди стали неверно понимать ее цели и методы.

Наиболее очевидной и объективной причиной использования системы аккумуляции тепла, является эффективное сокращение количества затрачиваемых средств на потребляемую энергию, к тому же стоимость энергии в пиковые часы, значительно выше, чем в другое время.

Мифы о системах накопления энергии

Миф 1. Нечастое применение таких систем

В настоящее время на рынке широко представлены системы накопления (аккумуляции) тепловой энергии, и многие активно их используют. Отличным примерами, которые демонстрируют значение накопленной энергии, являются бытовые водонагреватели, в которых такую систему называют «системой внепикового охлаждения». Для того, чтобы мгновенно нагреть воду требуется около 18 кВт, но самые мощные нагреватели имеют нагревательные элементы мощностью 4,5 кВт. Поэтому требуется в 4 раза меньше инфраструктур, необходимых про проведения проводки кабеля и соответственно, уменьшенное потребление энергии.

Никем не устанавливаются нагреватели, рассчитанные на потребление мгновенно максимально рассчитанную нагрузку, такая же практика существует и для системы климатизации. Причем установка системы с чиллером обычно уменьшается на 40—50 % (уменьшение инфраструктуры).

Миф 2. Системы аккумуляции тепла занимают очень много места

Возвращаясь к обычному водонагревателю? Много ли он занимает места в Вашем доме?

К тому же, как правило, используется система с частичным накоплением тепла, которая обеспечивает около трети необходимой мощности, потому и места такая установка занимает мало.

Миф 3. Такие системы слишком сложны

Обычный водонагреватель имеет простую конструкцию. Он содержит нагреватель, мощность которого ниже мощности, которая обеспечивает максимальные нагрузки, а его включение происходит в момент, когда температура вводы опускается ниже 95 % от заданной.

Емкость данной системы является простым примером накопителем тепла, который не имеет никаких движущих частей. В системе с частичным обеспечением нагрузки не может произойти отказа, так как в них отсутствует способность случайного задания большого потребления электроэнергии. Большие системы внепикового охлаждения имеют более сложные структуры управления, поэтому с ними может возникать множество проблем, а проектировщику придется потрудиться, чтобы спроектировать эффективную систему со значительной экономией ресурсов.

Миф 4. Отсутствие резервирования (запаса) при частичном накоплении энергии

Практически любая система внепикового охлаждения способна удовлетворять такому же резервирования, как и обычная система такой же стоимости.

Миф 5. Большие капитальные затраты

Получить действующие цены на оборудование проблематично, так как производители их опубликовывают неохотно. Хотя во многих исследованиях указываются низкие цены себестоимости систем. Рассчитаем примерную стоимость системы, используя в качестве удельной стоимости примерную величину в 256 $ на киловатт охлаждения, при этом получим приблизительную стоимость на установку всей системы:

Система, не использующая накопление энергии:

3 чиллера с мощностью 1400 кВт x 256 $/кВт ≈ 1 080 000 долларов.

Система, использующая частичное накопление тепла:

2 чиллера мощностью 1400 кВт x 256 $/кВт ≈ 720 000 долларов.

Система аккумуляции льда на 12300 кВтч x 28 $/кВт.ч ≈ 350 000 долларов.

Общая стоимость системы: ≈ 1 070 000 долларов.

Некоторые особенности оборудования и его расположение в системе могут привести к дополнительным капитальным затратам, однако, конкурировать по стоимости такие системы могут запросто.

Миф 6. Нет обеспечения экономии энергии

Анализируя экономию, необходимо рассмотреть как энергию, которая потребляется в здании, так и энергию, которая используется в источнике ее производства на электростанции. Энергоэффективное оборудование в большинстве своем призвано снижать потребление энергии, при этом, не снижая времени ее использования. Системы внепикового охлаждения экономят энергию за счет переноса ее "за счетчик". Вероятность экономии - 50/50.

Миф 7. Тарифы на электроэнергию могут изменяться, что может привести не только к отсутствию экономии, но и к увеличению затрат

Конечно, изменение тарифов неизбежно, но условия и потребление энергии остаются неизменными.

Можно надеяться, что когда-нибудь нагрузки в дневные и ночные часы сравняются, но такое произойдет, вряд ли, поэтому существенная разница в тарифах будет существовать еще долгие годы.

Достаточно известной на сегодняшний день системой аккумуляции тепла является система «теплый пол», в которой кабель заливается стяжкой 5 см. Но немногие знают, что увеличение стяжки до 10-15 см поможет не только снизить расходы, но и начать процесс накапливания тепла.

Раньше для накопления тепла использовали «тепловые пушки», которые не грели пространство около непосредственного нахождения людей, и к тому же сжигали кислород. Кабельные же системы обогрева не только позволяют эффективно аккумулировать тепло, но еще и создают комфортный микроклимат в помещении.

Одной из причин, позволяющих экономию сделать значительной, стало введение новых трехтарифных счетчиков электроэнергии, но не у многих есть возможность использовать систему обогрева в ночные часы. Использование кабельной системы вкупе со стяжкой 5 см позволяет нагревать быстро кабель, но в тоже время происходит и быстрое его остывание. То есть процесс имеет циклический характер. Увеличение стяжки до 10-15 см позволяет дольше сохранять тепло, а значит и длительность цикла увеличивается до нескольких часов.

Статус рассмотрения проекта Координационным Советом: Не рассматривался . Объекты внедрения: Промышленность , Некапитальные, легковозводимые временные сооружения, в т.ч. торговые , Учреждения социальной сферы (школы, больницы, детские сады и т.д.) , Административные и общественно-бытовые здания и сооружения . Эффект от внедрения:
- для объекта: повышение тепловой устойчивости зданий, снижение платы за потребленную энергию в соответствии с двухзоновым тарифным коэффициентом;
- для муниципального образования: снижение потерь электроэнергии в энергосистеме, упрощение управления мощностями в энергосистеме, повышение тепловой устойчивости зданий.

Аккумулирование тепла позволяет: повысить теплоустойчивость зданий, повысить КПД автономных источников электроэнергии, обеспечить простую схему возврата тепловой энергии стоков, снизить стоимость электрообогрева как производственных площадей, так и отдельных квартир, в которых устанавливаются ТЕПЛОНАКОПИТЕЛИ.

Тепловой аккумулятор в сравнении с другими аккумуляторами обладает следующими преимуществами: простота устройства, относительно низкая себестоимость, эффективные массогабаритные характеристики, долговечность.

Теплоаккумуляторы применяются для:

  • повышения тепловой устойчивости зданий;
  • повышения КПД автономных источников электроэнергии;
  • возврата тепловой энергии стоков;
  • обогрева помещений.

ПОВЫШЕНИЕ ТЕПЛОВОЙ УСТОЙЧИВОСТИ ЗДАНИЙ

В условиях аварий на теплоцентралях и тепловых сетях или плановых отключений важным фактором является тепловая устойчивость зданий, к которым прекращена подача тепла. Тепловой устойчивостью здания (помещения) принято понимать способность здания сохранять накопленное тепло в течение определенного времени (которого может стать недостаточно для ликвидации аварий) при изменяющихся тепловых воздействиях. Оборудование зданий теплоаккумулятором позволяет повысить его тепловую устойчивость, т.е. дать дополнительное время для устранения аварии. Теплоаккумуляторы можно устанавливать в уже существующих зданиях, но разработка теплоаккумуляторов на стадии проектирования нового строительства позволит более успешно решить задачу тепловой устойчивости зданий.

Размещение теплоаккумулятора в существующих подвалах затруднительно вследствие дефицита пространства. В арсенале технологий имеются разработки с достаточно эффективными массогабаритными параметрами.

Тепло, накопленное и сохраняемое в теплоаккумуляторе, в случае преднамеренного или аварийного отключения подачи тепла в здание, будет поддерживать приемлемую температуру в здании в течение более продолжительного времени, что облегчит проведение мероприятий по устранению аварии или решению иных задач.

ПОВЫШЕНИЕ КПД АВТОНОМНЫХ ИСТОЧНИКОВ ЭЛЕКТРОЭНЕРГИИ

Известно, что КПД бензо-, дизельагрегатов и газо-поршневых (в т.ч. на природном газе) электростанций сравнительно невелик (25-30%). Особенно он мал при недогрузке мощности электростанции.

При наличии теплоаккумулятора вся тепловая энергия электростанции используется для его зарядки. Избыток электроэнергии также направляется в теплоаккумулятор. Т.о. КПД автономного источника становится соизмеримым с КПД котла (порядка 85%), а стоимость электроэнергии, получаемой на такой электростанции, будет в несколько раз ниже сетевой.

Такое решение пригодно как для организаций, устраняющих аварии, так и для любого автономного потребителя (отдельно стоящий коттедж, дом, подъезд в доме, гараж и т.д.)

ВОЗВРАТ ТЕПЛОВОЙ ЭНЕРГИИ СТОКОВ

Установка теплоаккумуляторов позволяет решить и некоторые задачи энергосбережения. Так, установка тепловых насосов в системе канализационных стоков и закачка утилизированной энергии в теплоаккумулятор, позволит частично вернуть потери тепла, связанные со сбросом теплой воды в канализацию.

ОБОГРЕВ ПОМЕЩЕНИЙ С ПРИМЕНЕНИЕМ ТЕПЛОНАКОПИТЕЛЕЙ

Существующее положение о тарифном регулировании предусматривает значительно более низкий тариф на электроэнергию, потребляемую в ночное время по сравнению с дневным, что связано с необходимостью выравнивания графиков потребления электроэнергии и что важно для нормальной работы единой энергетической системы. Это позволяет пропорционально снизить затраты на обогрев помещения, но требует установки теплоаккумулирующих нагревательных приборов.

Затраты на установку теплонакопителей окупаются в среднем за 2-3 года за счет более дешевой стоимости 1 кВт. ч.

Хозяйствующие субъекты, использующие теплонакопители в широких масштабах, т.е. являющиеся потребителями большого количества электроэнергии, могут самостоятельно приобретать энергию на ФОРЭМе, где она обходится значительно дешевле.

Компании, внедряющие данную технологию / оказывающие данную услугу:

Классификация аккумуляторов тепла

В соответствии с принятыми выше определениями и выводами можно провести классификацию аккумуляторов тепла.

Аккумулирующая и теплообменная среды.

Прямое аккумулирование: аккумулирующей и теплообменной является одна и та же среда. Аккумулирующая среда может быть твердой, жидкой, газообразной или двухфазной (жидкость плюс газ).

Косвенное аккумулирование: энергия аккумулируется только посредством теплообмена (например, теплопроводностью через стенки резервуара) либо в результате массообмена специальной теплообменной среды в жидком, двухфазном или газообразном состоянии). Собственно аккумулирующая среда может быть твердой, жидкой или газообразной (процесс может протекать без фазового перехода, с фазовым переходом твердое тело - твердое тело, твердое тело - жидкость или жидкость - пар).Здесь теплообменная среда мало участвует в аккумуляции.

Полупрямое аккумулирование: процесс протекает как в предыдущем случае, за исключением того, что аккумулирующая емкость теплообменной среды играет более важную роль.

Сорбционное аккумулирование: в этом случае используется способность некоторых аккумулирующих сред абсорбировать газы с выделением тепла (и поглощением тепла при десорбции газа). Передача энергии может происходить непосредственно в форме тепла или с помощью газа

Масса аккумулирующей среды.

Постоянная масса. Обычно это случай косвенного аккумулирования. Однако может иметь место и прямое аккумулирование, если перемещаемая часть массы после охлаждения (при разрядке) или нагрева (при зарядке) полностью возвращается в аккумулятор (вытеснительное аккумулирование).

На практике не применяются конструктивно сложные виды аккумуляторов, такие или пневматические, с тепловыми насосами и другие.

Наиболее приемлемы системы прямого и полупрямого аккумулирования в активных системах и косвенного в пассивных системах отопления.

Системы аккумулирования тепловой энергии

Для выполнения своих функций аккумулирующая система должна иметь помимо аккумулирующих сосудов и их внутренних устройств также и внешнее оборудование. При тепловом аккумулировании для зарядки и разрядки могут понадобиться насосы, теплообменники, испарители, клапаны, трубопроводы.

Основные типы аккумуляторов:

· Баки - аккумуляторы.

· Солнечные бассейны.

· С фазовым переходом

· Гравийные и водо-воздушные

· Монолитные стены.

Типичная схема активной системы теплоснабжения с тепловым аккумулированием энергии для получения горячей воды (рис. 3.2.) включает первичный контур на антифризе, теплообменник в нижней части аккумулирующего бака и дополнительный нагреватель в верхней его части. Так как эффективность солнечного коллектора снижается с увеличением разности температур первичного контура и окружающей среды, температуру первичного контура следует поддерживать на возможно более низком уровне. Для этого следует обеспечить небольшой перепад температур в теплообменнике, воспрепятствовать перемешиванию в баке и обеспечить подвод тепла только в самую холодную часть бака.

Рис.3.2.Схема получения горячей воды для бытовых нужд с использованием солнечной энергии:

1 - солнечные коллекторы; 2 - первичный цикл (антифриз); 3 - циркуляционный насос; 4 - аккумулирующий бак; 5 - солнечный теплообменник; 6 - подача холодной воды; 7 - дополнительный нагреватель; 8 - линия подачи.

Баки - аккумуляторы

Выбор соотношения между размерами солнечного коллектора и бака-аккумулятора для кратковременного (горячая бытовая вода) и долговременного (обогрев) аккумулирования - интересная оптимизационная задача. Общий оптимум получается, когда оптимальны характеристики, как коллектора, так и аккумулятора. Удельные емкости аккумуляторов для кратковременного аккумулирования обычно составляют 50-100 кг воды на 1 м2 площади коллектора, а для долговременного аккумулирования в климатических условиях.

Центральной Европы необходимы значения удельной емкости 1000 кг/м2.

Солнечный бассейн, где коллектор и аккумулятор совмещены, является частным случаем аккумулирования с использованием горячего теплоносителя. Солнечная радиация поглощается донной поверхностью бассейна. В теплоносителе создается и поддерживается градиент концентрации соли (концентрация увеличивается с глубиной) между верхним конвективным слоем (под действием ветра) и нижним конвективным слоем (в результате отвода тепла). Благодаря этому конвекция и связанный с ней теплоотвод к поверхности подавляются, и слой толщиной ~ 1 м, в котором нет конвекции, служит тепловой изоляцией.

Таким способом можно достичь температуры воды 100°С, а 90°С является обычным расчетным значением в зонах с жарким климатом.

Рис.3.3.

1 -поверхностный слой воды; 2 - поверхность земли; 3 - выход горячего соляного раствора к потребителю тепла или к теплообменнику; 4 - конвективная (аккумулирующая) область; 5 -возврат холодного соляного раствора; 6 - неконвективный (изолирующий) слой.

Аккумуляторы с фазовым переходом.

Были предложены и разработаны системы аккумулирования на основе использования теплоты фазового перехода для зарядки и разрядки воздухом (рис. 3.4.) или водой (рис 3.5.).

На рис. 3.4. показан вариант теплообменника с оребренными кольцевыми каналами с раздельными контурами зарядной и разрядной сред. Таким образом, теплообменник позволяет проводить одновременно зарядку и разрядку. Каждый теплообменный элемент состоит из внутренней и наружной трубок, тепловой контакт между которыми обеспечивается продольными ребрами из материала с хорошей теплопроводностью (например, алюминия). Кольцевое пространство между ребрами заполнено материалом, аккумулирующим энергию фазового перехода (равную теплоте плавления). В этом варианте система теплового аккумулирования работает как гибридный аккумулятор, в котором используются теплота фазового перехода и теплота нагрева рабочего тела.

Рис.3.4.

Рис.3.5.Агрегат CALMAC для аккумулирования теплоты фазового перехода на Na2S2O3-5H2O или MgCl2-6H2O:

1 - съемная крышка; 2 - двигатель для перемешивания; 3 - вход воды; 4 - гидрат соли; 5 - пластиковый теплообменник; 6 - бак; 7 - выход воды.

Рис.3.6.

1 - элемент теплообменного блока: 2 - термоаккумулирующее вещество; 3 - продольное ребро; 4 - горячий теплоноситель; 5 - резервуар (кожух); 5 - холодный теплоноситель для разрядки.

Гравийные аккумуляторы

Галечный аккумулятор теплоты (рис. 3.7.). В солнечных воздушных системах теплоснабжения обычно применяются галечные аккумуляторы теплоты, представляющие собой емкости круглого или прямоугольного сечения, содержащие гальку размером 20--50 мм в виде насадки из плотного слоя частиц. Аккумуляторы этого типа обладают рядом достоинств, но по сравнению с водяным аккумулятором в этом случае требуется больший объем. Галечный аккумулятор может располагаться вертикально или горизонтально.

Горячий воздух, поступающий днем из солнечной коллектора в аккумулятор, отдает гальке свою теплоту и таким образом происходит зарядка аккумулятора. При разрядке аккумулятора ночью или в ненастную погоду воздух движется в обратном направлении и отводит теп лоту к потребителю.

При одинаковой энергоемкости объем галечного акккумулятора теплоты в 3 раза больше объема водяного бака-аккумулятора

Рис.3.7.Общий вид галечного аккумулятора:

1-крышка, 2-бункер, 3-бетонный блок, 4-теплоизоляция, 5-сетка, 6-галька

Мнолитные стены используются преимущественно в системах пассивного отопления и рассмотрены ниже.

Имеет определенную величину, и зависит от и .

С той или иной точностью, зная все перечисленные параметры, мы можем рассчитать ожидаемую производительность любого типа солнечного коллектора за произвольный период времени (кВт·ч за единицу времени). При этом, чем дольше расчетный период времени, тем более точны расчеты производительности .

Таким образом, располагая значением суммарного годового , можно относительно точно рассчитать прогнозируемую годовую производительность коллектора. Однако практически невозможно рассчитать такой прогноз на отдельные дни в году или часы. Это и отличает гелиосистемы от других генераторов теплоты (котлы, тепловые насосы и т.д.).

Выработка тепла не совпадает с графиком потребления

Одной из особенностей работы гелиосистемы для бытового сектора является то, что солнечные коллекторы генерируют тепло на протяжении всего светового дня, в отличии от котла, который за короткий промежуток времени может обеспечить потребителя тепловой энергией. Из-за этого время выработки тепловой энергии и потребление не совпадают. Это видно на графике.

График выработки и потребления тепловой энергии при применении солнечных коллекторов

Данные особенности показывают, что для оптимальной работы гелиосистемы необходимо аккумулировать тепловую энергию . Для этих целей, как правило, используют . Их объем должен быть достаточным для хранения полученной солнечной энергии за день. В данном случае мы говорим о суточном аккумулировании тепловой энергии.

Для аккумулирования тепловой энергии чаще всего используют воду

Вода - общедоступный и эффективный теплоноситель, имеющий высокие показатели теплопроводности c = 4,187 (кДж/кг·К) или с = 1,1163 (Вт·ч/кг·К) второе значение чаще используется в расчетах отопительной техники. Расчеты теплоаккумулирующей емкости совпадают как для систем ГВС так и отопительных систем.

Кроме суточного аккумулирования тепловой энергии, можно реализовать аккумулирование тепла на более длительный период времени. Такие системы называют системами с сезонным аккумулированием тепловой энергии. Для реализации таких объектов баки аккумуляторы должны иметь значительные объемы, что бы за летный период накопить тепло, которое будет потребляться за отапливаемый период.

Не всегда объем бака аккумулятора имеет решающее значение . Определяющим параметром служит теплоемкость. Для воды теплоемкость ограничена теплофизическими свойствами. При атмосферном давлении мы можем нагреть воду до 95°С, поэтому при условии, что конечное значение температуры воды после использования теплоты будет 45°С, мы можем получить не более 60 Вт/кг (w=1,1163·(95-45))=58,15 Вт/кг).

Альтернативные способы хранения тепла

Иногда для целей повышения теплоемкости аккумулятора используют другие виды аккумулируемых сред (бетон, галька, металл и т.д.). При равном объеме данные вещества обладают меньшей удельной теплопроводностью, однако их можно нагревать до более высоких температур, что в свою очередь увеличивает теплоемкость аккумулятора. При нагревании на очень высокие температуры можно достичь значения теплоемкости до 400 Вт/кг.

Однако для использования с гелиосистемами температура нагрева аккумулятора тепла ограничена максимальной температурой нагрева солнечных коллекторов. Так же хранение аккумулирующей среды с высокой температурой увеличивает тепловые потери, поэтому, как правило, аккумулятор заряжается до сравнительно невысоких температур (до 95°С) и используется с низко потенциальной системой отопления (теплые полы, фанкойлы).

Эффективно может аккумулироваться и теплота плавления некоторых материалов. Для таких аккумуляторов тепла используют парафин, каустическую соду, и т.д. При фазовом переходе во время плавления значение теплоемкости рассчитывается так:

W = m , где

  • W - аккумулированная энергия Дж;
  • m - масса аккумулирующего вещества кг;
  • ct - удельная теплоемкость в твердом состоянии Дж / (кг·K);
  • cs - удельная теплоемкость в жидком состоянии Дж / (кг· K);
  • C - теплота плавления Дж/кг;
  • ϑ1 - начальная температура °С;
  • ϑs - температура плавления °С;
  • ϑ2 - температура нагрева °С;

Тепловой аккумулятор - устройство для аккумулирования тепловой энергии основанное на использовании физического или химического процесса, связанного с поглощением и выделением теплоты. К основным из них относятся накопление-выделение внутренней энергии при нагреве-охлаждении твердых или жидких тел, фазовые переходы с поглощением-выделением скрытой теплоты, процесс сорбции -десорбции или обратимая химическая реакция, протекающая с выделением-поглощением тепла.

Аккумуляцией (аккумулированием) тепловой энергии или аккумуляцией теплоты называется процесс накопления тепловой энергии в период ее наибольшего поступления для последующего использования, когда в этом возникнет необходимость. Процесс накопления энергии называется зарядкой, процесс ее использования – разрядкой.

Классификация тепловых аккумуляторов

По типу процесса в аккумуляторах теплоты различают:

  • тепловое аккумулирование энергии твердыми и жидкими телами за счет изменения температуры вещества - теплоёмкостная аккумуляция;
  • тепловое аккумулирование энергии посредством использования теплоты фазового перехода;
  • термохимическое аккумулирование тепловой энергии.

По временному фактору использования аккумуляторов теплоты различают:

  • тепловые аккумуляторы краткосрочного (суточные) действия - цикла работы (зарядка/разрядка) не превышает продолжительности суток;
  • тепловые аккумуляторы долгосрочного действия - продолжительность процесса зарядки и разрядки превышает продолжительность суток (может достигать недельного, месячного и годового периода).

Конструктивное различие между первыми и вторыми сказывается в первую очередь на их размерах, что связано с необходимостью аккумулирования разного количества теплоты. Кроме того, тепловые аккумуляторы долгосрочного действия необходимо хорошо теплоизолировать из-за необходимости длительного хранения запасенной теплоты.

По интервалу рабочих температур тепловые аккумуляторы можно разделить на 4 группы:

  • для производства холода - Т < 20 °С
  • низкотемпературные - 20 °С < Т < 200 °С
  • среднетемпературные - 200 °С < Т < 500 °С
  • высокотемпературные - Т > 500 °С

Наиболее широкое применение нашли низкотемпературные тепловые аккумуляторы, использование которых связано с системами жизнеобеспечения человека, экологически чистыми способами производства энергии и оптимизацией потребления энергии.

Использование тепловых аккумуляторов для производства холода связано с необходимостью хранения пищевых продуктов и медицинских тканей, в том числе в условиях транспортировки.

Средне- и высокотемпературные тепловые аккумуляторы пока не нашли широкого применения в промышленности. Применение среднетемпературных тепловые аккумуляторы связано в основном с энергетическими установками (например, солнечные электростанции) и системами утилизации тепла.

Высокотемпературными тепловые аккумуляторы могут найти применение в металлургии и энергетике.

Теплоёмкостная аккумуляция

Теплоёмкостная аккумуляция основана на способности веществ запасать энергию при нагревании. Вещества, используемые для накопления тепловой энергии, называются теплоаккумулирующими материалами. При этом количество аккумулированной энергии зависит от температуры, на которую нагревается теплоаккумулирующий материал, и его удельной теплоемкости. Этот способ является наиболее простым и давно применяется, например, при отоплении печами , которые выполняются достаточно массивными и накапливают во время нагрева тепло, которое затем постепенно расходуется на обогрев помещения. С точки зрения величины удельной теплоемкости, т.е. способности аккумулировать теплоту в расчете на 1 кг массы , одним из самых хороших является вода .

Тепловые аккумуляторы с использованием теплоты фазового перехода

В данном типе тепловых аккумуляторов аккумулирование тепловой энергии основанное на использовании обратимого процесса фазового перехода плавление-затвердевание. В этом случае в качестве теплоаккумулирующего материала используется фазоменяющий материал. Реализация этого способа оказывается более сложной, из-за необходимости усложнения конструкции. Однако в таких тепловых аккумуляторах на единицу объема запасается гораздо большее количество теплоты. При этом процесс зарядки и разрядки может быть осуществлен в узком температурном диапазоне, что оказывается очень важным при необходимости работы тепловых аккумуляторов в условиях небольших температурных напоров.

Некоторые применения тепловых аккумуляторов с использованием теплоты фазового перехода

Пленочная теплица с аккумулятором теплоты в грунте:
1 - теплица
2 - аккумулятор тепла
3, 4 - каналы
5, 6 - трубы
7 - вентилятор

Тепловой аккумулятор для автомобиля

В строительстве

Стеновые панели с использованием фазоменяющих материалов. Как правило, это смесь бетона с парафином или с включенными в него небольшими капсулами, содержащими фазоменяющий материал. Панели с фазоменяющими материалами используются в качестве ограждающих конструкций здания и поглощают излишнее тепло в дневное время, отдавая его в ночное, когда отсутствует поступление солнечной радиации. Резкие перепады между дневными и ночными температурами особенно характерны для климата пустынь и полупустынь. Эффективность их использования так же связана с тем, что в них сочетаются свойства тепловой защиты, термостабилизатора и собственно аккумуляции тепла. При этом конструкция системы аккумулирования оказывается предельно простой.

В сельском хозяйстве

В сельском хозяйстве тепловые аккумуляторы используются для обогрева теплиц в ночное время с использованием тепла накопленного в светлое время суток. Вентилятор осуществляет циркуляцию воздуха в теплице через тепловой аккумулятор. Избытки тепла в дневное время служат для зарядки теплового аккумулятора, а в ночное время тепловой аккумулятор разряжается и подогревает воздух в теплице.

В системах вентиляции

Применение тепловых аккумуляторов в системах вентиляции для сглаживания перепадов температур в дневное и ночное время. В дневное время происходит зарядка аккумулятора и охлаждение поступающего воздуха, а ночью его нагрев и, соответственно, разрядка теплового аккумулятора. Резкие перепады между дневными и ночными температурами особенно характерны для климата пустынь и полупустынь.

В системах электроотопления и электрического нагрева воды для горячего водоснабжения

Применение тепловых аккумуляторов для зарядки путем электронагрева в ночное время и использование теплоты в дневное позволяет значительно сократить расходы на электрическую энергию за счёт потребления электроэнергии в ночное время по более низкому тарифу.

В автомобильной промышлености

Применение тепловых аккумуляторов для облегчения пуска двигателя и обогрева салона автомобиля в холодное время. Теплота, запасается во время работы двигателя и может храниться в течение нескольких дней. Для этого тепловой аккумулятор помещается в сосуд Дьюара (термос), обеспечивающий наилучшую теплоизоляцию.

Впервые тепловой аккумулятор предложил канадский конструктор Оскар Шатц. Первые автотермосы появились в Канаде под брендом Centaur, эта компания функционирует и поныне. Среди отечественных разработчиков термосов лидерами можно назвать «Автоплюс МАДИ» и «АвтоТерм».

Термохимическое аккумулирование тепловой энергии

Способ термохимического аккумулирования тепловой энергии основан на использовании обратимых химических реакций. Он позволяет запасать тепловой энергии на единицу массы больше, чем в первых двух случаях, но сложен в реализации.

Поделиться: