Виды кинетической энергии. Кинетическая энергия и ее изменение — Гипермаркет знаний

Энергия - это то, благодаря чему существует жизнь не только на нашей планете, но и во Вселенной. При этом она может быть очень разной. Так, тепло, звук, свет, электричество, микроволны, калории представляют собой различные виды энергии. Для всех процессов, происходящих вокруг нас, необходима эта субстанция. Большую часть энергии все сущее на Земле получает от Солнца, но имеются и другие ее источники. Солнце передает ее нашей планете столько, сколько бы выработали одновременно 100 млн самых мощных электростанций.

Что такое энергия?

В теории, выдвинутой Альбертом Эйнштейном, изучается взаимосвязь материи и энергии. Этот великий ученый смог доказать способность одной субстанции превращаться в другую. При этом выяснилось, что энергия является самым важным фактором существования тел, а материя вторична.

Энергия - это, по большому счету, способность выполнять какую-то работу. Именно она стоит за понятием силы, способной двигать тело или придавать ему новые свойства. Что же означает термин «энергия»? Физика - это которой посвятили свою жизнь многие ученые разных эпох и стран. Еще Аристотель использовал слово «энергия» для обозначения деятельности человека. В переводе с греческого языка «энергия» - это «деятельность», «сила», «действие», «мощь». Первый раз это слово появилось в трактате ученого-грека под названием «Физика».

В общепринятом сейчас смысле данный термин был введен в обиход английским ученым-физиком Это знаменательное событие произошло в далеком 1807 году. В 50-х годах XIX в. английский механик Уильям Томсон впервые использовал понятие «кинетическая энгергия», а в 1853 г. шотландский физик Уильям Ренкин ввел термин «потенциальная энергия».

Сегодня эта скалярная величина присутствует во всех разделах физики. Она является единой мерой различных форм движения и взаимодействия материи. Другими словами, она представляет собой меру преобразования одних форм в другие.

Единицы измерения и обозначения

Количество энергии измеряется Эта специальная единица в зависимости от вида энергии может иметь разные обозначения, например:

  • W - полная энергия системы.
  • Q - тепловая.
  • U - потенциальная.

Виды энергии

В природе существует множество самых разных видов энергии. Основными из них считаются:

  • механическая;
  • электромагнитная;
  • электрическая;
  • химическая;
  • тепловая;
  • ядерная (атомная).

Есть и другие виды энергии: световая, звука, магнитная. В последние годы все большее число ученых-физиков склоняются к гипотезе о существовании так называемой «темной» энергии. Каждый из перечисленных ранее видов данной субстанции имеет свои особенности. Например, энергия звука способна передаваться при помощи волн. Они способствуют возникновению вибрации барабанных перепонок в ухе людей и животных, благодаря которой можно слышать звуки. В ходе различных химических реакций высвобождается энергия, необходимая для жизнедеятельности всех организмов. Любое топливо, продукты питания, аккумуляторы, батарейки являются хранилищем этой энергии.

Наше светило дает Земле энергию в виде электромагнитных волн. Только так она может преодолеть просторы Космоса. Благодаря современным технологиям, таким как солнечные батареи, мы можем использовать ее с наибольшим эффектом. Излишки неиспользованной энергии аккумулируются в особых энергохранилищах. Наряду с вышеперечисленными видами энергии часто используются термальные источники, реки, океана, биотопливо.

Механическая энергия

Этот вид энергии изучается в разделе физики, называемом «Механикой». Она обозначается буквой Е. Ее измерение осуществляется в джоулях (Дж). Что собой представляет эта энергия? Физика механики изучает движение тел и взаимодействие их друг с другом либо с внешними полями. При этом энергия, обусловленная движением тел, называется кинетической (обозначается Ек), а энергию, обусловленную или внешних полей, именуют потенциальной (Еп). Сумма движения и взаимодействия представляет собой полную механическую энергию системы.

Для расчета обоих видов существует общее правило. Для определения величины энергии следует вычислить работу, необходимую для перевода тела из нулевого состояния в данное состояние. При этом чем больше работа, тем большей энергией будет обладать тело в данном состоянии.

Разделение видов по разным признакам

Существует несколько видов разделения энергии. По разным признакам ее делят на: внешнюю (кинетическую и потенциальную) и внутреннюю (механическую, термическую, электромагнитную, ядерную, гравитационную). Электромагнитная энергия в свою очередь подразделяется на магнитную и электрическую, а ядерная - на энергию слабого и сильного взаимодействия.

Кинетическая

Любые движущиеся тела отличаются наличием кинетической энергии. Она часто так и называется - движущей. Энергия тела, которое движется, теряется при его замедлении. Таким образом, чем быстрее скорость, тем больше кинетическая энергия.

При соприкосновении движущегося тела с неподвижным объектом последнему передается часть кинетической, приводящая и его в движение. Формула энергии кинетической следующая:

  • Е к = mv 2: 2,
    где m — масса тела, v - скорость движения тела.

В словах эту формулу можно выразить следующим образом: кинетическая энергия объекта равна половине произведения его массы на квадрат его скорости.

Потенциальная

Этим видом энергии обладают тела, которые находятся в каком-либо силовом поле. Так, магнитная возникает, когда объект находится под действием магнитного поля. Все тела, находящиеся на земле, обладают потенциальной гравитационной энергией.

В зависимости от свойств объектов изучения они могут иметь различные виды потенциальной энергии. Так, упругие и эластичные тела, которые способны вытягиваться, имеют потенциальную энергию упругости либо натяжения. Любое падающее тело, которое было ранее неподвижно, теряет потенциальную и приобретает кинетическую. При этом величина этих двух видов будет равнозначна. В поле тяготения нашей планеты формула энергии потенциальной будет иметь следующий вид:

  • Е п = mhg,
    где m — масса тела; h - высота центра массы тела над нулевым уровнем; g - ускорение свободного падения.

В словах эту формулу можно выразить так: потенциальная энергия объекта, взаимодействующего с Землей, равна произведению его массы, ускорению свободного падения и высоты, на которой оно находится.

Эта скалярная величина является характеристикой запаса энергии материальной точки (тела), находящейся в потенциальном силовом поле и идущей на приобретение кинетической энергии за счет работы сил поля. Иногда ее называют функцией координат, являющейся слагаемым в лангранжиане системы (функция Лагранжа динамической системы). Эта система описывает их взаимодействие.

Потенциальную энергию приравнивают к нулю для некой конфигурации тел, расположенных в пространстве. Выбор конфигурации определяется удобством дальнейших вычислений и называется «нормировкой потенциальной энергии».

Закон сохранения энергии

Одним из самых основных постулатов физики является Закон сохранения энергии. В соответствии с ним, энергия ниоткуда не возникает и никуда не исчезает. Она постоянно переходит из одной формы в другую. Иными словами, происходит только изменение энергии. Так, например, химическая энергия аккумулятора фонарика преобразуется в электрическую, а из нее - в световую и тепловую. Различные бытовые приборы превращают электрическую в свет, тепло или звук. Чаще всего конечным результатом изменения являются тепло и свет. После этого энергия уходит в окружающее пространство.

Закон энергии способен объяснить многие Ученые утверждают, что общий объем ее во Вселенной постоянно остается неизменным. Никто не может создать энергию заново или уничтожить. Вырабатывая один из ее видов, люди используют энергию топлива, падающей воды, атома. При этом один ее вид превращается в другой.

В 1918 г. ученые смогли доказать, что закон сохранения энергии представляет собой математическое следствие трансляционной симметрии времени - величины сопряженной энергии. Другими словами, энергия сохраняется вследствие того, что законы физики не отличаются в различные моменты времени.

Особенности энергии

Энергия - это способность тела совершать работу. В замкнутых физических системах она сохраняется на протяжении всего времени (пока система будет замкнутой) и представляет собой один из трех аддитивных интегралов движения, сохраняющих величину при движении. К ним относятся: энергия, момент Введение понятия «энергия» целесообразно тогда, когда физическая система однородна во времени.

Внутрення энергия тел

Она представляет собой сумму энергий молекулярных взаимодействий и тепловых движений молекул, составляющих его. Ее нельзя измерить напрямую, поскольку она является однозначной функцией состояния системы. Всегда, когда система оказывается в данном состоянии, ее внутренняя энергия имеет присущее ему значение, независимо от истории существования системы. Изменение внутренней энергии в процессе перехода из одного физического состояния в другое всегда равно разности между ее значениями в конечном и начальном состояниях.

Внутренняя энергия газа

Помимо твердых тел, энергию имеют и газы. Она представляет собой кинетическую энергию теплового (хаотического) движения частиц системы, к которым относятся атомы, молекулы, электроны, ядра. Внутренней энергией идеального газа (математической модели газа) является сумма кинетических энергий его частиц. При этом учитывается число степеней свободы, представляющее собой число независимых переменных, определяющих положение молекулы в пространстве.

С каждым годом человечество потребляет все большее количество энергоресурсов. Чаще всего для получения энергии, необходимой для освещения и отопления наших жилищ, работы автотранспорта и различных механизмов, используются такие ископаемые углеводороды, как уголь, нефть и газ. Они относятся к

К сожалению, только незначительная часть энергии добывается на нашей планете с помощью возобновимых ресурсов, таких как вода, ветер и Солнце. На сегодняшний день их удельный вес в энергетике составляет всего 5 %. Еще 3 % люди получают в виде ядерной энергии, производимой на атомных электростанциях.

Невозобновляемые ресурсы имеют следующие запасы (в джоулях):

  • ядерная энергия - 2 х 10 24 ;
  • энергия газа и нефти - 2 х 10 23 ;
  • внутренне тепло планеты - 5 х 10 20 .

Годовая величина возобновляемых ресурсов Земли:

  • энергия Солнца - 2 х 10 24 ;
  • ветер - 6 х 10 21 ;
  • реки - 6,5 х 10 19 ;
  • морские приливы - 2,5 х 10 23 .

Только при своевременном переходе от использования невозобновляемых запасов энергии Земли к возобновляемым человечество имеет шанс на долгое и счастливое существование на нашей планете. Для воплощения передовых разработок ученые всего мира продолжают тщательно изучать разнообразные свойства энергии.

Обусловленная движением .

Простым языком, кинетическая энергия - это энергия, которую тело имеет только при движении. Когда тело не движется, кинетическая энергия равна нулю.

Энциклопедичный YouTube

  • 1 / 5

    Впервые понятие кинетической энергии было введено в трудах Готфрида Лейбница (1695 г.), посвящённых понятию «живой силы » .

    Физический смысл

    Рассмотрим систему, состоящую из одной материальной точки, и запишем второй закон Ньютона :

    m a → = F → , {\displaystyle m{\vec {a}}={\vec {F}},}

    где F → {\displaystyle {\vec {F}}} - есть равнодействующая всех сил , действующих на тело. Скалярно умножим уравнение на перемещение материальной точки d s → = v → d t {\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} . Учитывая, что

    a → = d v → d t , {\displaystyle {\vec {a}}={\frac {{\rm {d}}{\vec {v}}}{{\rm {d}}t}},} d (m v 2 2) = F → d s → . {\displaystyle {\rm {d}}\left({{mv^{2}} \over {2}}\right)={\vec {F}}{\rm {d}}{\vec {s}}.}

    Если система замкнута, то есть внешние по отношению к системе силы отсутствуют, или равнодействующая всех сил равна нулю, то

    d (m v 2 2) = 0 , {\displaystyle d\left({{mv^{2}} \over {2}}\right)=0,}

    а величина

    T = m v 2 2 {\displaystyle T={{mv^{2}} \over 2}}

    остаётся постоянной. Эта величина называется кинетической энергией материальной точки. Если система изолирована, то кинетическая энергия является интегралом движения .

    - момент инерции тела

    ω → {\displaystyle {\vec {\omega }}} - угловая скорость тела.

    Физический смысл работы

    A 12 = T 2 − T 1 . {\displaystyle \ A_{12}=T_{2}-T_{1}.}

    Кинетическая энергия вращательного движения

    Кинетическая энергия в гидродинамике

    Релятивизм

    Данную формулу можно переписать в следующем виде.

    С понятием работы тесно связано другое фундаментальное физическое понятие – понятие энергии. Поскольку в механике изучается, во-первых, движение тел, а во-вторых, взаимодействие тел между собой, то принято различать два вида механической энергии: кинетическую энергию , обусловленную движением тела, и потенциальную энергию , обусловленную взаимодействием тела с другими телами.

    Кинетической энергией механической системы называют энергию, з ависящую от скоростей движения точек этой системы.

    Выражение для кинетической энергии можно найти, определив работу равнодействующей силы, приложенной к материальной точке. На основании (2.24) запишем формулу для элементарной работы равнодействующей силы:

    Так как
    , то dА = mυdυ. (2.25)

    Чтобы найти работу равнодействующей силы при изменении скорости тела от υ 1 до υ 2 проинтегрируем выражение (2.29):

    (2.26)

    Так как работа - мера передачи энергии от одного тела другому, то на

    основании (2.30) запишем, что величина есть кинетическая энергия

    тела:
    откуда вместо (1.44) получаем

    (2.27)

    Теорему, выраженную формулой (2.30) принято называть теоремой о кинетической энергии . В соответствии с ней работа сил, действующих на тело (или систему тел), равна изменению кинетической энергии этого тела (или системы тел).

    Из теоремы о кинетической энергии следует физический смысл кинетической энергии : кинетическая энергия тела равна работе, которую оно способно совершать в процессе уменьшения своей скорости до нуля. Чем больше «запас» кинетической энергии у тела, тем большую работу оно способно совершить.

    Кинетическая энергия системы равна сумме кинетических энергий материальных точек, из которых эта система состоит:

    (2.28)

    Если работа всех сил, действующих на тело, положительна, то кинетическая энергия тела возрастает, если работа отрицательна, то кинетическая энергия убывает.

    Очевидно, что элементарная работа равнодействующей всех приложенных к телу сил будет равна элементарному изменению кинетической энергии тела:

    dА = dЕ к. (2.29)

    В заключение заметим, что кинетическая энергия, как и скорость движения, имеет относительный характер. Например, кинетическая энергия пассажира, сидящего в поезде, будет разной, если рассматривать движение относительно полотна дороги или относительно вагона.

    §2.7 Потенциальная энергия

    Вторым видом механической энергии является потенциальная энергия – энергия, обусловленная взаимодействием тел.

    Потенциальная энергия характеризует не любое взаимодействие тел, а лишь такое, которое описывается силами, не зависящими от скорости. Большинство сил (сила тяжести, сила упругости, гравитационные силы и т.д.) именно таковы; исключением являются лишь силы трения. Работа рассматриваемых сил не зависит от формы траектории, а определяется лишь её начальным и конечным положением. Работа таких сил на замкнутой траектории равна нулю.

    Силы, работа которых не зависит от формы траектории, а зависит лишь от начального и конечного положения материальной точки (тела) называют потенциальными или консервативными силами .

    Если тело взаимодействует со своим окружением посредством потенциальных сил, то для характеристики этого взаимодействия можно ввести понятие потенциальной энергии.

    Потенциальной называют энергию, обусловленную взаимодействием тел и зави­сящую от их взаимного расположения.

    Найдем потенциальную энергию тела, поднятого над землей. Пусть тело массой m равномерно перемещается в гравитационном поле из положения 1 в положение 2 по поверхности, сечение которой плоскостью чертежа показано на рис. 2.8. Это сечение является траекторией материальной точки (тела). Если трение отсутствует, то на точку дейст­вуют три силы:

    1) сила N со стороны поверхности нормально поверхности, работа этой силы равна нулю;

    2) сила тяжести mg, работа этой силы А 12 ;

    3) сила тяги F со стороны некоторого движущего тела (двигатель внутреннего сгорания, электродвигатель, человек и т. п.); работу этой силы обозначим А T .

    Рассмотрим работу силы тяжести при перемещении тела вдоль наклонной плоскости длиной ℓ (рис. 2.9). Как видно из этого рисунка, работа равна

    А" = mgℓ соsα = mgℓ соs(90° + α) = - mgℓ sinα

    Из треугольника ВСD имеем ℓ sinα = h, по­этому из последней формулы следует:

    Траекторию движения тела (см. рис. 2.8) можно схематично представить небольшими участками наклонной плоскости, поэтому для, работы силы тяжести на всей траектории 1 -2 справедливо выражение

    A 12 =mg (h 1 -h 2) =-(mg h 2 - mg h 1) (2.30)

    Итак, работа силы тяжести не зависит от траектории тела, а зависит от различия в высотах расположения начальной и конечной точек траектории.

    Величину

    е п = mg h (2.31)

    называют потенциальной энергией материальной точки (тела) массой m поднятой над землей на высоту h. Следовательно, формулу (2.30) можно переписать так:

    A 12 = =-(En 2 - En 1) или A 12 = =-ΔEn (2.32)

    Работа силы тяжести равна взятому с обратным знаком изменению потенциальной энергии тел, т. е. разности ее конечного и начального значений (теорема о потенциальной энергии ).

    Подобные рассуждения можно привести и для упруго деформированного тела.

    (2.33)

    Отметим, что физический смысл имеет разность потенциальных энергий как величина, определяющая работу консервативных сил. В связи с этим безразлично, какому положению, конфигурации, следует приписать нулевую потенциальную энергию.

    Из теоремы о потенциальной энергии можно получить одно очень важное следствие: консервативные силы всегда направлены в сторону уменьшения потенциальной энергии. Установленная закономерность проявляется в том, что любая система, предоставленная самой себе, всегда стремится перейти в такое состояние, в котором её потенциальная энергия имеет наименьшее значение. В этом заключается принцип минимума потенциальной энергии .

    Если система в данном состоянии не обладает минимальной потенциальной энергией, то это состояние называют энергетически невыгодным .

    Если шарик находится на дне вогнутой чаши (рис.2.10,а), где его потенциальная энергия минимальна (по сравнению с ее значениями в соседних положениях), то его состояние более выгодно. Равновесие шарика в этом случае является устойчивым : если сместить шарик в сторону и отпустить, то он снова возвратится в своё первоначальное положение.

    Энергетически невыгодным, например, является положение шарика на вершине выпуклой поверхности (рис.2.10, б). Сумма сил, действующих при этом на шарик, равна нулю, и потому, этот шарик будет находится в равновесии. Однако равновесие это является неустойчивым : достаточно малейшего воздействия, чтобы он скатился вниз и тем самым перешёл в состояние энергетически более выгодное, т.е. обладающее меньшей

    потенциальной энергией.

    При безразличном равновесии (рис. 2.10, в) потенциальная энергия тела равна потенциальной энергии всех его возможных ближайших состояний.

    На рисунке 2.11 можно указать некоторую ограниченную область пространства (например cd), в которой потенциальная энергия меньше, чем вне её. Эта область получила название потенциальной ямы .

    при чём тут "условия преобразования одного вида энергии в другой" и "сохранение законов по времени"?

    Есть такая теорема Нетер. Это - в математике, даже не в физике, строго говоря. Она говорит, что если некая система уравнений имеет какую-либо симметрию, то будет существовать и нечто, не меняющееся при преобразованиях в рамках этой симметрии.

    Ну а раз что-то не меняется, то оно - "сохраняется". Все физические "законы сохранения" чего-либо являются следствием той или иной симметрии физических уравнений.

    Закон сохранения энергии - лишь один из множества физических законов сохранения, некоторые из которых вы тоже знаете (например, закон сохранения импульса, закон сохранения момента импульса, закон сохранения электрического заряда). И каждый из физических законов сохранения отражает одну из симметрий физических уравнений.

    Например, параллельный перенос в пространстве не меняет физических законов и вид физических уравнений, отражающих эти законы. Следствием этого факта является сохранение импульса любой замкнутой системы. А если бы физические законы и описывающие их уравнения изменялись бы при таком переносе, у нас не сохранялся бы суммарный импульс.

    Аналогично обстоит дело и с переносом во времени. Раз и пока физические законы не меняются с течением времени, то не меняется и полная энергия замкнутой системы. Соответственно, отдельным "видам энергии" факт неизменности физических законов "разрешает" меняться только так, чтобы полная (суммарная) энергия замкнутой систем сохранялась. Соответственно, увеличению какого-то одного вида энергии волей-неволей ВСЕГДА сопутствует уменьшение какого-то другого, чтобы сумма не менялась. А если полная энергия замкнутой системы начнет меняться со временем, значит начали меняться физические законы. Пока такого явления не зарегистрировано, но кто знает, что было, например, в момент возникновения нашей Вселенной? Или что произойдет в течении миллиардов лет.

    Таким образом, ГЛОБАЛЬНО сохранение энергии - это синоним (следствие, эквивалент) постоянства физических законов во времени. Условие сохранения является универсальной первопричиной переходов одних "видов энергии" в другие. Раз сумма не меняется, то слагаемые могут меняться только за счет друг друга. Ну а более конкретные физические механизмы реализации в разных случаях будут разные.

    С сохранением импульса и другими законами сохранения - ровно та же история.

    Понятно, что в преобразовании энергии непосредственно участвуют электроны и их составляющие, но что именно при этом происходит?

    Атом или группа взаимодействующих атомов имеют определенные уровни энергий, соответствующие их стабильному состоянию. Вернее, эти уровни соответствуют не столько состоянию атома или атомов в целом, сколько состоянию его/их электронов.

    Откуда берутся эти уровни энергии и соответствующие им состояния? Состояния являются стационарными решениями уравнений квантовой механики, а уровень энергии - это характерное число (или, если угодно, параметр системы), при котором можно найти стационарное решение. Любую другую энергию атом или система атомов может иметь лишь очень недолго (состояние не стационарно) и непременно перейдет в одно из стационарных состояний.

    Теперь рассмотрим ситуацию, когда 1)два атома были далеко друг от друга и 2) оказались очень близко. Во втором случае электрические поля заряженных ядер перекроются. У электронов в таком совместном поле будут другие стационарные состояния, чем в ситуации двух далеких друг от друга атомов. А у других состояний - другие (свои) энергии.

    Теперь сравниваем самые низкие значения стационарных уровней энергии в первом и втором случаях. Если во втором энергия ниже, то атомам "выгодно" объединиться в молекулу, а избыток энергии излучить (дальше излученный фотон так и полетит куда-то далеко, или, наоборот, много раз провзаимодействует переизлучаясь с другими атомами и его энергия перейдет в кинетическую энергию хаотичного движениы атомов, то есть - в тепло). Вот вам образование двухатомной молекулы с выделением энергии в ходе химической реакции.

    В противоположном случае минимальная внутренняя энергия молекулы выше, чем сумма минимальных энергий двух атомов. Могут такие атомы образовать молекулу? Да, если сначала получат откуда-то разницу в энергиях. Например, один атом мог иметь не наименьшую энергию из возможных, а более высокую. Почему? Ну, поглотил фотон, но не успел испустить его обратно. Или столкнулся с другим атомом и возбудился за счет энергии столкновения (кинетическая энергия теплового лвидения перешла во внутреннюю энергию атома и еще не излучена). А раз энергия одного из атомов не минимальна, то модет оказаться "выгодно" создать молекулу и "свалиться" на ее минимальную энергию. Вот вам пример химической реакции с поглощением энергии: что-то возбуждает атом, потратив свою энергию, и только из-за этого атом смог вступить в реакцию с соседом. А поглощенная до реакции энергия так и осталась внутри молекулы. Эта внутренняя энергия высвободится только после разрушения молекулы.

    И только лишь электроны участвуют в этом?

    Электроны и электрические поля ядер, с которыми электроны взаимодействуют. Любая химическая реакция - это изменение состояния электронных оболочек.

    Почему не участвуют ядра? Потому что ядра несравненно тяжелее электронов. Солнце ведь тоже почти не отреагирует на приближение или удаление Земли - оно слишком тяжелое, чтобы сколь-нибудь заметно дергаться из-за такой мелочи. Вот и атомные ядра не обращают особого внимания на происходящее с их электронами

    Сами ядра тоже не разваливаются на части по поводу электрического поля электронов. Внутренние силы, удерживающие кварки в ядре несравненно мощнее, чем электрические поля в атоме.

    По этой причине квантовая механика решает задачу о повелении электронов в поле ядер, но не интересуется поведением ядер в поле электронов - это настолько малая поправка, что ее и измерить-то не получится. Соответственно, вся химия - это поведение электронных оболочек в полях одного или нескольких ядер. А когда речь заходит о поведении самого ядра, то становится уже не до химии.

    >>Физика 10 класс >>Физика: Кинетическая энергия и ее изменение

    Кинетическая энергия

    Кинетическая энергия - это энергия тела, которую оно имеет вследствие своего движения.

    Если говорить простым языком, то под понятием кинетической энергии следует подразумевать только ту энергию, которую имеет тело при движении. Если же тело пребывает в состоянии покоя, то есть, совершенно не движется, тогда кинетическая энергия будет равняться нулю.

    Кинетическая энергия равняется той работе, которую она должна затратить, чтобы вывести тело из состояния покоя в состояние движения с какой-то скоростью.

    Следовательно, кинетическая энергия является разностью между полной энергией системы и её энергией покоя. Иначе говоря, что кинетическая энергия будет частью полной энергии, которая обусловленная движением.

    Давайте попробуем разобраться в понятии кинетической энергии тела. Для примера возьмем движение шайбы по льду и попробуем понять связь между величиной кинетической энергии и работой, которая должна быть выполнена, чтобы вывести шайбу из состояния покоя и привести ее в движение, имеющее некоторую скорость.

    Пример

    Играющий на льду хоккеист, ударив клюшкой по шайбе сообщает ей скорость, а так и кинетическую энергию. Сразу после удара клюшкой, шайба начинает очень быстрое движение, но постепенно ее скорость замедляется и наконец, она совсем останавливается. Это значит, что уменьшение скорости явилось результатом силы трения, происходящей между поверхностью и шайбой. Тогда сила трения будет направлена против движения и действия этой силы сопровождаются перемещением. Тело же использует имеющую механическую энергию, выполняя работу против силы трения.

    Из этого примера мы видим, что кинетическая энергия будет той энергией, которую тело получает в результате своего движения.

    Следовательно, кинетическая энергия тела, имеющая определенную массу, будет двигаться со скоростью равной той работе, которую должна выполнить сила, приложенная к покоящемуся телу, чтобы сообщить ему данную скорость:

    Кинетическая энергия является энергией движущегося тела, которая равняется произведению массы тела на квадрат его скорости, деленной пополам.


    Свойства кинетической энергии

    К свойствам кинетической энергии относятся: аддитивность, инвариантность по отношению к повороту системы отсчета и сохранение.

    Такое свойство, как аддитивность являет собой кинетическую энергию механической системы, которая слагается из материальных точек и будет равна сумме кинетических энергий всех материальных точек, которые входят в эту систему.

    Свойство инвариантности по отношению к повороту системы отсчета обозначает, что кинетическая энергия не зависит от положения точки и направления её скорости. Ее зависимость распространяется лишь от модуля или от квадрата её скорости.

    Свойство сохранения обозначает, что кинетическая энергия при взаимодействиях, изменяющих лишь механические характеристики системы, совершенно не изменяется.

    Это свойство неизменно по отношению к преобразованиям Галилея. Свойства сохранения кинетической энергии и второго закона Ньютона будет вполне достаточно, для выведения математической формулы кинетической энергии.

    Соотношение кинетической и внутренней энергии

    Но существует такая интересная дилемма, как то, что кинетическая энергия может быть зависимой от того, с каких позиций рассматривать эту систему. Если, например, мы берем объект, который можно рассмотреть только под микроскопом, то, как единое целое, это тело неподвижно, хотя существует и внутренняя энергия. При таких условиях кинетическая энергия появляется только тогда, когда это тело движется, как единое целое.

    То же тело, если рассматривать на микроскопическом уровне, обладает внутренней энергией, обусловленной движением атомов и молекул, из которых оно состоит. А абсолютная температура такого тела будет пропорциональна средней кинетической энергии такого движения атомов и молекул.



Поделиться: