Понятие энергетические ресурсы. Энергетические ресурсы

Энергетический ресурс - это запасы энергии, которые при данном уровне техники могут быть использованы для энергоснабжения. Это широкое понятие относится к любому звену «энергетической цепочки», к любой стадии энергетического потока на пути от природного источника стадии потребления энергии.

Энергоресурсы классифицируются в зависимости от целей и задач классификации. Если за основу взять стадии энергетического потока, то рассматривать следующие виды энергетических ресурсов, энергии энергоносителей:

- природные энергетические ресурсы , которые, в свою очередь подразделяются на: топливные: органическое топливо-уголь, нефть, газ, сланцы, торф, дрова и некоторые другие (например, битуминозные пески); расщепляющиеся материалы (ядерное горючее) – уран 235 и 238; нетопливные: гидроэнергия, энергия Солнца, ветра, приливов, морских волн, геотермальная энергия и некоторые другие виды (например, энергия разности температурных потенциалов океанских глубин и поверхности);

- облагороженные (обогащенные) энергоресурсы : брикеты, концентраты, сортовой уголь, промпродукт, шлам, отсев;

- переработанные энергоресурсы : светлые нефтепродукты, мазуты, прочие темные нефтепродукты, кокс, полукокс, коксовая мелочь, уголь древесный, смола, антрацит;

- преобразованные энергетические ресурсы : электроэнергия, лота, сжатый воздух и газы (азот, кислород, водород, аргон, оксид, углерода и др.), генераторный газ, коксовый газ, сланцевый газ, газ нефтепереработки, биогаз и некоторые другие (например, жидкое топливо, получаемое из низкокачественных углей);

- побочные (вторичные) энергоресурсы : горючие производственные и непроизводственные отходы (твердые, жидкие, газообразные); тепловые отходы (преимущественно жидкие и газообразные); избыточное давление продуктов и промежуточных продуктов (переделов).

Мировые запасы топливно-энергетических ресурсов . Учет мировых запасов топливно-энергетических ресурсов и перспективы их использования представляют собой глобальную проблему, постоянно заботящую мировую научную общественность. Европейское объединение независимых экспертов «Римский клуб», готовит периодические доклады о путях развития человечества, где существенное место занимают топливноэнергетические вопросы. Так, в 70-е годы XX в. в связи с энергетическим кризисом 1972 г. общие мировые запасы органических топлив с учетом экономически оправданной извлекаемости оценивались (с округлением) всего в 1 трл.т (в условном исчислении). Если принять за основу перспективных расчетов тенденции прошлого - удвоение суммарного мирового энергопотребления каждые 20 лет, то при потреблении в 2000 и последующих годах (при стабилизации потребления) по 20 млрд, т этих запасов должно было бы хватить всего на 50 лет, т. е., считая от 1980 г., только до 2030 г.

Следует отметить, что аналогичные опасения возникали у человечества также в начале XX века, когда прогнозировалась исчерпаемость топливных запасов (преимущественно угля) к 60-м годам. Однако тогда мировая энергетика находилась на другом, значительно более низком уровне развития и соответственно значительно хуже были исследованы топливные месторождения, а некоторые из них вообще еще не были открыты. Тогда мировая общественность впервые задумалась о поиске новых видов энергии для будущего удовлетворения своих постоянно растущих потребностей. Именно тогда были предложены многие из известных сегодня альтернативных, так называемых «возобновляемых» видов энергии: солнечная, геотермальная, энергия ветра, приливов и отливов, движения волн, разница термического потенциала поверхности и глубин мирового океана и многое другое .

При дополнительных исследованиях и уточнениях после 1980 г. во время своеобразной «инвентаризации» мировых запасов цифры стали более оптимистичными - природного органического топлива должно хватить на весь XXI в. Однако все эти прогнозы, как и в начале века, дали ощутимый толчок к поиску возобновляемых энергоресурсов, альтернативных органическому топливу.

По данным ЮНЕСКО в недрах Земли содержится 10 16 т (10 10 Гига-тонн - Гт; 1 Гт = 1 млн. т) ископаемого углерода. К сожалению, не весь он легко или рентабельно добываем.

Уголь является после дров самым широко применяемым видом природного органического топлива. Известные, доступные для разработки, запасы угля оцениваются в 600 Гт (примерно в 4 раза больше добытого). Возможно, что запасы угля на Земле достигают 10 000Гт. Предполагается, что 2500 Гт из них доступны для разработки.

Нефть , по оценкам ЮНЕСКО, использована примерно на 1/3 от уровня и доступных для разработки мировых запасов. Доказанные запасы составляют 884 Гт, однако в конечном счете пригодными для добычи могут оказаться около 300 Гт. В последние годы открываются или уточняются по запасам месторождения нефти общим объемом около 5 Гт ежегодно, т.е. больше, за год. Предполагается, что в настоящее время достигнут максимум добычи нефти, после чего ее мировое производство и потребление начнут снижаться.

Природный газ к настоящему использован примерно на 40 % его известных запасов, около 590 Гт, причем его извлекаемость больше, чем у нефти, и составить также примерно 300 Гт. Максимум производства и потребления ожидается в 2010 г., когда его потребление в 3- раза превысит существующее.

Горючие сланцы и битуминозные пески - наименее эффективные виды ископаемого органического топлива. Из них, правило, добывается нефть, причем значительная часть добываемого сырья составляет пустая порода. Так, в бывшем СССР ежегодно перерабатывалось 35 млн. тонн сланцев, из которых извлекалось около 12 т нефти.

Доказанные на по оценкам 70-80-х годов XX в. составляют примерно 900 млрд. т в пересчете на угольный эквивалент (с теплотой сгорания 6000 ккал/кг). В числе: уголь - 600 млрд.т, нефть - 200 млрд.т, газ - 100 млрд.т; потребление энергии в год - 5 млрд.т. Позже мировые запасы несколько переоценены, и современные цифры, особенно по запасам угля, существенно выше.

Среди возобновляемых источников энергии наиболее существенными признаются следующие.

Геотермальная энергия . Каждый квадратный метр поверхности Земли постоянно излучает около 0,06 Вт-слишком малая величина, чтобы ее мог ощутить человек. Однако в целом планета ежегодно теряет около 2,8- 10 14 кВт ч. При таких темпах Земля должна бы остыть до температуры космического пространства через 200 млн. лет. Но тот факт, что Земле уже 4,5 млрд. лет, означает, что энергия поступает изнутри нее, и именно от нагрева в результате радиоактивного распада определенных изотопов в горных породах земной коры, находящихся порой на значительной глубине. Известно понятие геотермический градиент : температура земных недр возрастает на 30°С с увеличением глубины на 1 километр. В некоторых районах геотермическая активность усиливает этот эффект и температура может повышаться до 80°/км. Однако пар геотермального происхождения имеет температуру выше 300 °С, что ограничивает эффективность его использования. Таким образом, геотермальная энергия - это фактически разновидность ядерной энергии.

В настоящее время действует около 20 геотермальных электростанций мощностью от нескольких МВт до 500 МВт каждая. Их общая мощность около 1,5 ГВт (1 ГВт = 10 3 МВт = 10 6 кВт). В среднем одна буровая скважина, пробуренная на нужную глубину (от сотен метров до километра в зависимости от характера земной коры), может дать около 5 MВт, и срок ее действия-10 - 20 лет.

Приливные волны Мирового океана несут около 3 ТВт знергии (1 ТВт = 10 12 Вт= 10 9 кВт= 10 6 МВт = 10 3 ГВт). Однако ее получение рентабельно лишь в нескольких районах планеты, где приливы особенно высоки, например, в некоторых районах Ла-Манша и Ирландского моря вдоль побережья Северной Америки и Австралии и на отдельных участках Белого и Баренцева морей.

По техническим причинам приливные станции работают лишь на 25 % своей нормативной мощности, так что из общего потенциала 80 ГВт может быть использовано лишь 20 ГВт. Несколько лет действует одна из самых крупных приливных электростанций близ Ла-Ранс (Франция) проектной мощностью 240 МВт, которая при довольно небольших затратах производит 60 МВт.

Волны Мирового океана содержат еще около 3 ТВт энергии. Обычная волна в Северном море несет 40 кВт энергии на каждый метр длины на протяжении 30 % времени своего существования и около 10 кВ на метр в течение 70 % времени. Расчетные данные о том, какую энергию можно получить от волн, сильно расходятся. Согласно одним - это 100 ГВт во всем мире, по другим - 120 ГВт можно получить лишь у берегов Англии. Несколько экспериментальных прототипов волновых энергетических установок построено в Англии и Японии.

Дующие на Земле ветры обладают энергией в 2700 ТВт, но лишь 1/4 часть их находится на высоте до 100 метров над поверхностью Земли. Если на всех континентах построить ветряные установки, беря в расчет только поверхность суши и учитывая неизбежные потери, то это может дать максимум 40 ТВт. Однако даже 1/10 часть этой энергии превышает весь гидроэнергетический потенциал. При использовании энергии ветра человечество столкнулось с неожиданными проблемами. В США на побережье Флориды были сооружены мощные ветряки с диаметром лопастей свыше 3-х метров. Оказалось, что эти установки генерируют довольно мощное излучение неслышимого инфразвука, который, во-первых удручающе действует на человеческую психику, а во-вторых, резонирует естественные колебания таким образом, что на расстоянии нескольких километров дрожат и лопаются стекла в домах, стеклянная посуда, люстры и т.п. Изменение (уменьшение) диаметра ветряных установок пока не дало положительных результатов, так что дальнейшее сооружение подобных генераторов является проблематичным.

Гидроэнергия . На Земле имеется 10 18 т воды, однако лишь 1/2000 часть ее ежегодно вовлекается в круговорот, испаряясь и вновь выпадая на поверхность в виде дождя и снега. Но даже эта ничтожная доля составляет 500 000 км 3 воды. Ежегодно из океанов испаряется 430 000 и с суши 70 000 км 3 воды. Из них 390 000 км 3 воды выпадает в виде осадков обратно в океаны и 110 000 - на сушу. Таким образом, ежегодно 40 000 км 3 воды стекает с континентов в океаны. Средняя высота континентов - 80 м.

Энергетический потенциал гидроресурсов, использовать который экономически целесообразно, в России составляет порядка 1 трлн. кВт ч/год, в том числе на больших и средних реках около 850 млрд. кВт.ч/год. По этому показателю мы занимаем второе место в мире после Китая (табл. 2.1).

Таблица 2.1. Использование гидроэнергетического потенциала

Страна Экономический гидроэнергетический потенциал, млрд. кВт.ч/год Выработка электроэнергии на ГЭС, млрд. кВт.ч/год Доля использованного экономического потенциала
Китай 92,0 7,0
США 330,0 46,8
Бразилия 165,4 25,2
Канада 304,3 56,9
Индия 51,0 27,6
Япония 91,5 69,3
Норвегия 106,5 81,9
Швеция 64,9 76,4
Франция 71,6 89,5
Италия 44,5 70,6
Россия 160,1 18,8

Тепловая энергия океанов . мировой океан поглощает 70% солнечной энергии, падающей на Землю. В океанских течениях заключено 5-8 Твт энергии. Перепад температур между холодными водами на глубине несколько сот метров и теплыми водами на поверхности океана представляет собой огромный источник энергии, оцениваемый в 20-40 тыс.ТВт, из которых практически могут быть освоены лишь 4 ТВт.

Солнечная энергия . Энергетическая отдача Солнца равнозначна сжиганию или превращению в энергию массы в количестве 4,2-10 6 т/с. Учитывая, что общая масса Солнца составляет 22 10 26 т, можно подсчитать, что Солнце будет продолжать выделять энергию еще в течение 2000 млрд. лет. Земля, находящаяся от Солнца на расстоянии 150 млн. км, получает приблизительно 2 миллиардные доли общего излучения Солнца. Общее количество энергии Солнца, достигающей поверхности Земли за год, в 50 раз превышает всю ту энергию, которую можно получить из доказанных запасов ископаемого топлива, и в 35 000 раз превышает нынешнее ежегодное потребление энергии в мире. Из общего количества энергии отражение от поверхности Земли - 5 %, отражение облаками - 20 %, поглощение самой атмосферой - 25 %, рассеивается в атмосфере, но достигает земли - 23 %, достигает земли непосредственно 27%, всего на поверхности Земли - 50 %. Среднее количество солнечной энергии, попадающей в атмосферу Земли, 1,353 кВт/м 2 или 178000 ТВт. Гораздо меньшее ее количество достигает поверхности Земли, а доля, которую можно использовать, еще меньше. Среднегодовая цифра составляет 10 000 ТВт, что примерно в 1000 раз превышает нынешнее потребление энергии в мире. Максимальное солнечное облучение достигает 1 кВт/м 2 , но это длится лишь в течение 1-2 ч в разгар летнего дня. В большинстве районов мира среднее облучение солнечным светом составляет порядка 200 Вт/м 2 .

Один из методов получения солнечной энергии заключается в нагреве парового котла турбины с помощью системы зеркал, собирающих солнечный свет. Солнечная электростанция мощностью 10 МВт потребует около 2000 рефлекторов площадью по 25 м 2 каждый. Другой путь - использование фотоэлементов, которые непосредственно преобразуют солнечную энергию в электричество, обычно с КПД 10-15 %. Небольшие установки мощностью 250-1000 кВт существуют, однако они дороги из-за высокой стоимости фотоэлементов. При массовом производстве таких установок есть надежда сократить затраты до уровня, при котором станет осуществимой электрификация изолированных поселений с помощью фотоэлементных установок.

Солнечное топливо . Около 90 % солнечной энергии, накопленной на поверхности Земли, сосредоточено в растениях. Общее количество такой энергии - около 635 ТВт-лет, что примерно равно количеству энергии, содержащейся в наших запасах угля.

Однако сегодня для энергетического использования низкокалорийного древесного и древовидного топлива нецелесообразно его прямое сжигание. На базе низкокачественной древесины, древесных отходов, горючего мусора, фекальных стоков и отбросов цивилизации возникла и развивается биоэнергетика, позволяющая с помощью бактерий, в том числе анаэробных, перерабатывать органическую массу в топливо, преимущественно - в метан.

Оценивая современное и перспективное использование нетрадиционных источников энергии, мировая научная общественность сходится на следующих цифрах (табл. 2.2).

Таблица 2.2. Современное и прогнозируемое использование и возобновляемых источников энергии в мире, млрд. кВт.ч

Источник Современное использование Начало ХХI в.
Солнце 2-3 2000-5000
Геотермальная энергия 1000-5000
Ветер 1000-5000
Приливы 0,4 3-60
Энергия волн
Тепловая энергия океанов
Биомасса 550-700 2000-5000
Древесное топливо 10 000-12 000 15 000-20 000
Древесный уголь 2000-5000
Торф
Тягловые животные 30 (в Индии)
Горючие сланцы
Битуминозные пески
Гидроэнергия
Итого (округленно): 12 000- 13 000 30 000-53 000

Общая картина добычи и производства различных видов первичной энергии и энергетических ресурсов в будущем приведена в табл. 2.3.

Таблица 2.3. Варианты производства первичной энергии в мире в 1975-2030 гг., ТВт - год в год.

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Вологодский государственный университет»

Инженерно-строительный факультет

Кафедра теплогазоснабжения и вентиляции


Контрольная работа

Дисциплина

«Внутренние энергетические ресурсы промышленных производств»

«Классификация топливно-энергетических ресурсов. Виды возобновляемых энергоресурсов»


Выполнил

студент группы ЗСТ-32

Юрецкая Е.А.

Проверил, принял

Сыцянко Е.В.


Вологда - 2015


ВВЕДЕНИЕ


В настоящее время вопрос экономного использования ресурсов является одним из ключевых как в деятельности отдельных предприятий, так и в функционировании всего государства в целом.

В широком смысле ресурсы можно определить как совокупность средств труда, которые предприятие использует для достижения собственных целей и удовлетворения потребностей. Одной из ключевых статей в структуре себестоимости являются материальные ресурсы.

Все многообразие материальных ресурсов, обозначенных в экономике народного хозяйства как предметы труда, условно можно подразделить на сырьё и материалы и топливо и энергию. В энергетическом секторе мирового хозяйства ведущую роль играют топливно-энергетические ресурсы - нефть, нефтепродукты, природный газ, каменный уголь, энергия (ядерная, гидроэнергия). Среди топливно-энергетических ресурсов особое место занимают нефть и природный газ. Эта группа товаров сохраняют роль лидеров среди прочих товарных групп в международной торговле, уступая только продукции машиностроения.


1. КЛАССИФИКАЦИЯ ТОПЛИВНО-ЭНЕРГЕТИЧЕСКИХ РЕСУРСОВ

топливный энергетический горючий тепловой

Топливно-энергетические ресурсы (ТЭР) - совокупность всех природных и преобразованных видов топлива и энергии, используемых в республике.

Топливно-энергетические ресурсы - совокупность природных и произведенных энергоносителей, запасенная энергия которых при существующем уровне развития техники и технологии доступна для использования в хозяйственной деятельности.

Топливно-энергетические ресурсы делятся на первичные и вторичные.

К первичным энергетическим ресурсам относят те ресурсы, которые люди получают непосредственно из природных источников для последующего преобразования в другие виды энергии, либо для непосредственного использования. Часто первичные ресурсы должны быть извлечены и подготовлены к дальнейшему использованию. Первичные ресурсы подразделяют на возобновляемые и невозобновляемые.

Вторичные энергетические ресурсы - энергетические ресурсы, получаемые в виде побочных продуктов основного производства или являющиеся такими продуктами.

Топливно-энергетические ресурсы включают не только источники энергии, но и произведенные энергетические ресурсы: тепловую энергию (в первую очередь энергию горячей воды и водяного пара) и электрический ток.

Произведенные энергетические ресурсы получают, используя энергию первичных и вторичных энергоресурсов. Электрическая энергия впоследствии может быть снова преобразована в другие виды энергии.

Основные виды энергетических ресурсов представлены схеме, изображенной на рис. 1.

Вторичные топливно-энергетические ресурсы делятся на три основные группы:

Рис. 1 - Виды топливно-энергетических ресурсов


горючие (топливные), которые включают в себя энергию технологических процессов химической и термохимической переработки сырья, а именно горючие газы, твёрдые и жидкие топливные ресурсы, которые не пригодны для дальнейших технологических преобразований;

тепловые - это тепло отходящих газов при сжигании топлива, тепло воды или воздуха, использованных для охлаждения технологических агрегатов и установок, теплоотходов производств;

энергоресурсы избыточного давления (напора) - это энергия газов, жидкостей и сыпучих тел, покидающих технологические агрегаты с избыточным давлением (напором), которое необходимо снижать перед следующей ступенью использования этих жидкостей, газов, сыпучих тел или при выбросе их в атмосферу, водоёмы, ёмкости и другие приёмники. Энергетические ресурсы избыточного давления преобразуются в механическую энергию, которая либо непосредственно используется для привода механизмов и машин, либо преобразуется в электрическую энергию.

Невозобновляемые это естественно образовавшиеся и накопившиеся в недрах планеты запасы веществ, способные при определенных условиях высвобождать заключенную в них энергию. Но образование новых веществ и накопление в них энергии происходит значительно медленнее, чем их использование. К ним относятся ископаемые виды топлива и продукты их переработки: каменный и бурый уголь, сланцы, торф, нефть, природный и попутный газ. Особыми видами невозобновляемых энергетических ресурсов являются расщепляющиеся (радиоактивные) вещества, находящиеся в недрах нашей планеты.

Из двух возможных природных источников ядерной энергетики - урана и тория, пока в практическом использовании находится лишь уран. В будущем возможно потребуется и торий

Суммарные ресурсы урана, использованные в атомной энергетике, не могут оцениваться по количеству его добычи из недр. Как известно, некоторая его часть была использована и для других целей, в частности для производства оружия. Однако основная часть добытого урана сегодня находится в хранилищах облученного ядерного топлива (ОЯТ), т.к. КПД использования энергии заключенной в уране, к сожалению не превышает 1%. В мире пока используются в основном легководные реакторы на тепловых нейтронах в открытом топливном цикле, без использования технологий рециклинга ОЯТ.


ВИДЫ ВОЗОБНОВЛЯЕМЫХ ЭНЕРГОРЕСУРСОВ


Согласно Энергетической стратегии России до 2020 г. экономический обоснованный потенциал возобновляемых источников энергии составляет 270 млн т у.т. В то же время без учета большой гидроэнергетики использование ВЭР в России составляет 32 кг у.т. на 1 чел. в год, что в 10 раз меньше, чем в США и в 70 меньше, чем в Финляндии.

Латвия увеличила долю ВЭР в топливном балансе страны до 36%. Лучше из европейских стран только Швейцария, где этот показатель достиг 41%. Согласно предложению Еврокомиссии доля ВЭР к 2020 г. должна быть доведена до 20% у каждого члена ЕС. В электроэнергетике России этот показатель не превышает 1%, а по тепловой энергии составляет менее 5%.

Причины необходимости использования ВЭР:

запасы других энергоресурсов не безграничны;

при сжигании органического топлива оно превращается в отходы, по массе превышающие первичное топливо;

при массовой добыче изменяются ландшафты (карьеры, перемещенный грунт, золоотвалы и т.д.), изменяется уровень грунтовых вод;

добыча нефти и газа может приводить к необратимой деформации земной коры;

негативное воздействие на растительный и животный мир;

глобальное потепление.

Использование возобновляемых энергоресурсов даже без сокращения объемов потребления тепловой и электрической энергии позволит снизить потребление первичного топлива.

В повседневной жизни мы редко задумываемся о гигантских термических процессах внутри земли, о ее вращении, притяжении к другим планетам и звездам, о гигантских космических энергетических потоках, не поддающихся простому обывательскому осмыслению. В то же время даже привычных возобновляемых энергоресурсов, которые можно использовать с поверхности земли, хватит для развития человечества еще на много поколений.

В традиционном понимании к ВЭР относятся:

энергия солнца;

энергия ветра;

энергия водных потоков;

энергия морских приливов и волн;

высокопотенциальная геотермальная энергия;

низкопотенциальная энергия земли, воздуха и воды;

биомасса;

биогаз, свалочный и шахтный газ,

а также промышленные и бытовые отходы, образующиеся в результате деятельности главного загрязнителя планеты - человека.

Коллекторы солнечных батарей

Ресурсы: солнечное излучение. Месторасположение: повсюду. Сфера использования: отопление, обеспечение горячей водой. Диапазон мощности: от 1,5 до 200 МВт.ч/в год, причем в долгосрочной перспективе верхнего предела мощности не существует. Расходы на производство тепловой энергии составляют сегодня: 20 - 50 пфеннигов/кВт.ч.

Энергия ветра

Ресурсы: кинетическая энергия ветра. Месторасположение: по всему миру, главным образом, на побережье и вершинах гор. Сфера использования: производство электроэнергии. Диапазон мощности: от 0,05 кВт до 2,5 МВт на одну установку, ветряные фермы на 100 МВт и более. Расходы на производство электроэнергии составляют сегодня: 8 - 30 пфеннигов/кВт.ч.

Все ветряные мельницы работают по так называемому принципу сопротивления: оказывая своими крыльями сопротивление ветру, они могут преобразовывать максимум 15 процентов силы ветра. Современные ветроэнергетические установки работают по принципу подъемной силы, когда, как у самолета, используется подъемная сила встречного ветра.

Энергия воды

Ресурсы: энергия воды при её движении и падении с высоты. Месторасположение: горы, реки. Сфера использования: производство электроэнергии, аккумулирование энергии. Диапазон мощности: гидроаккумулирующие гидроэлектростанции и ГЭС на не зарегулированном стоке до 5 000 МВт. Расходы на производство электроэнергии составляют сегодня: 5 - 10 пфеннигов/кВт.ч.

Гидроресурсы обеспечивают около 4% производимой в Германии электроэнергии. Сегодня в эксплуатации находится около 5 500 ГЭС общей мощностью 3 500 МВт.

Биомасса

Ресурсы: древесина, зерновые культуры, сахаро- и крахмалосодержащие растения, масличные растения. Месторасположение: по всему миру при наличии биомассы. Сфера использования: производство тепла, комбинированная выработка тепла и электроэнергии, в виде топлива. Диапазон мощности: от 1 кВт до 30 МВт. Расходы: при выработке тепла 4 - 20 пфеннигов/кВт.ч; при получении тока 12 - 20 пфеннигов/кВт.ч.

Существует множество вариантов использования биомассы для выработки энергии. При этом первостепенное значение имеют, прежде всего, растения с высоким содержанием обменной энергии и древесина.

Ресурсы: органические отходы. Месторасположение: по всему миру в зависимости от наличия отходов. Сфера использования: производство тепла, комбинированная выработка тепла и электроэнергии. Диапазон мощности: 20 кВт - 10 МВт. Расходы на сегодня: при выработке тепла 5 - 15 пфеннигов/кВт.ч; при получении электроэнергии 12 - 30 пфеннигов/кВт.ч.

Биогаз возникает при разложении органических веществ специальными метановыми бактериями.

Геотермальная энергия

Ресурсы: тепло земных недр. Месторасположение: повсюду. Сфера использования: отопление и охлаждение, сезонное аккумулирование холода и тепла, технологическое тепло, выработка электроэнергии. Диапазон мощности: вблизи поверхности: 6 - 8 кВт; на углубленных пластах: до 30 МВт. Издержки производства: при выработке тепла 4 - 12 пфеннигов/кВт.ч; при получении тока 15 - 20 пфеннигов/кВт.ч.

Геотермальная энергия представляет собой тепло, пробивающееся из недр Земли на её поверхность. Пригодное для использования тепло зависит от глубины, на которой производится отбор геотермальной энергии. Через каждые 100 метров становится теплее на приблизительно 3° по Цельсию. Принцип использования тепла недр Земли довольно прост: под Землю закачивается вода, там она нагревается и затем подается наверх. Частично используются также природные термальные воды. Из-за высоких расходов на установку оборудования геотермальная энергия пока используется довольно редко.

Все вышеперечисленные виды энергии потенциально не принадлежат никому на территории страны. Поэтому их может использовать в личных целях любой гражданин или предприятие. На данном этапе развития общество еще не задумывается всерьез о применении всех этих видов энергии. Тем не менее, определенные разработки в этом направлении уже ведутся. Так, в настоящее время начато производство автомобилей с гибридными двигателями, которые имеют возможность работать на водороде. Это первый шаг к тому, чтобы начать перестраивать производственные циклы по получению энергии.

Особенность возобновляемых ресурсов в том, что они образуются вне зависимости от деятельности человека. Не зависимо от того, найдет ли человек применение всему этому потенциалу или нет, независимые источники энергии будут существовать и увеличиваться. Это преимущество подталкивает человечество к тому, чтобы начать масштабные разработки в плане применения этих видов энергии в хозяйственных и промышленных целях.


ЗАКЛЮЧЕНИЕ


Развиваясь, человечество начинает использовать все новые виды ресурсов (атомную и геотермальную энергию, солнечную, гидроэнергию приливов и отливов, ветряную и другие нетрадиционные источники). Однако, главную роль в обеспечении энергией всех отраслей Экономики сегодня играют топливные ресурсы. Это четко отражает «приходная часть» топливно-энергетического баланса. Топливно-энергетический комплекс тесно связан со всей промышленностью страны. На его развитие расходуется более 20% денежных средств. На ТЭК приходиться 30% основных фондов и 30% стоимости промышленной продукции России. Он использует 10% продукции машиностроительного комплекса, 12% продукции металлургии, потребляет 2/3 труб в стране, дает больше половины экспорта РФ и Значительное количество сырья для химической промышленности. Его доля в перевозках составляют 1/3 всех грузов по железным дорогам, половину перевозок морского транспорта и всю транспортировку по трубопроводам.

Топливно-энергетический комплекс имеет большую районо образовательную функцию. С ним напрямую связано благосостояние всех граждан России, такие проблемы, как безработица и инфляция. Наибольшее значение в топливной промышленности страны принадлежит трем отраслям: нефтяной, газовой и угольной, из которых особо выделяется нефтяная.

Роль топливно-энергетических ресурсов состоит в том, что они необходимы для производственного цикла и выпуска продукции предприятия. Энергоресурсы напрямую влияют на себестоимость и конкурентоспособность выпускаемой и реализованной продукции.


СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ


1.Арнов Р.И. Состав и структура топливно-энергетических ресурсов промышленного предприятия. - М: Информ, 2007.

Априжевский А.А. Энергосбережение и энергетический менеджмент. - Минск: Высш. шк., 2005.

Зайцев Н.Л. Экономика промышленного предприятия. - М.: ИНФРА-М, 2005.

Петронев С.И. Использование топливно-энергетических ресурсов в промышленности.- СПб: Пресс, 2008


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.


В учебном пособии излагаются общие вопросы энергетики, характеризующие структуру топливно-энергетического комплекса и основные показатели единой энергетической системы России. Дана общая характеристика тепловых, атомных и гидравлических электростанций, электрических и тепловых сетей, потребителей электроэнергии, приведены типовые графики электрических и тепловых нагрузок энергосистем и условия обеспечения балансов мощности и энергии. Рассмотрены виды и характеристики углеводородных топлив как невозобновляемых источников энергии. Рассмотрены теоретические основы преобразования энергии в тепловых двигателях и их термодинамические циклы. Приведены тепловые, технологические и компоновочные схемы тепловых и атомных электростанций, рассмотрено их основное и вспомогательное оборудование. Дана общая характеристика гидроэнергетических установок и рассмотрены процессы преобразования гидроэнергии в электрическую энергию на различных типах гидроэнергоустановок. Рассмотрены природоохранные проблемы гидроэнергетики и их учет при проектировании гидроэлектростанций, а также проблемы и перспективы использования традиционных и нетрадиционных, возобновляемых и невозобновляемых источников энергии.

Учебное пособие предназначено для студентов, обучающихся по специальности 140211 “Электроснабжение”.

Используемая аббревиатура

АКЭС – атомная конденсационная электростанция;

АСКУЭ – автоматизированная система коммерческого учета электроэнергии;

АТЭЦ – атомная теплоэлектроцентраль;

ВЛ – воздушная линия (электропередачи);

ВолЭС – волновая энергетическая станция;

ГиТЭС – гидротермальная электростанция;

ГАЭС – гидравлическая аккумулирующая электростанция;

ГВС – горячее водоснабжение;

ГПП – главная понизительная подстанция;

ГеоЭС – геотермальная электростанция;

ГЭС – гидравлическая электростанция;

ГРЭС – государственная районная электростанция;

ЕЭС – единая энергосистема;

КЛ – кабельная линия (электропередачи);

КЭС – конденсационная электростанция;

ЛЭП – линия электропередачи;

ОЭС – объединенная энергосистема;

ПЭС – приливная электростанция;

РЗАиТ – релейная защита, автоматика и телемеханика;

РП – распределительный пункт (подстанция);

РЭС – районная энергосистема;

СКЭС – солнечная космическая электростанция;

СЭС – солнечная электростанция;

ТВЭЛ – тепловыделяющий элемент;

ТП – трансформаторная подстанция;

ТЭК – топливно-энергетический комплекс;

ТЭС – тепловая электростанция;

ТЭЦ – теплофикационная электроцентраль (теплоэлектроцентраль);

ФОРЭМ – фондовый оптовый рынок энергии и мощности;

НОРЭМ – новый фондовый оптовый рынок энергии и мощности;

ЭС – электростанция;

ЭСМТ – электростанция морских течений.

Введение

Научно-технический прогресс немыслим без развития энергетики и электрификации производств. Для повы­шения производительности труда первостепенное значение имеет автоматизация про­изводственных процессов, базирующаяся, прежде всего, на применении электрической энергии. Основными потребителями электроэнергии в производстве продукции являются электрические машины, мощность которых варьируется от единиц ватт до десятков мегаватт, причем рост планетарного населения, с одной стороны, и рост материальных потребностей, с другой, неизбежно ведут к наращиванию потребляемой электроэнергии с каждым годом.

Для производства электрической энергии применяются различные электростанции, базирующиеся на сжигании природных энергетических ресурсов. Вместе с тем, запасы тради­ционных природных топлив (нефти, угля, газа и др.) не бесконечны. Ограничены запасы и ядерного топлива - урана и тория, из которого с помощью реакторов можно получать плутоний. Поэтому на сегодняшний день важно не только развивать добычу экономически выгодных источников энергии, но и рационально использовать имеющиеся природные ресурсы для производства электроэнергии без существенного ущерба окружающей среде. Отсюда – широчайший комплекс проблем технико-экономического, экологического и социального характера в области энергетики.

Учебная дисциплина “Общая энергетика” рассматривает общие вопросы формирования и функционирования топливно-энергетического комплекса (ТЭК) страны, основу которого составляют районные энергетические системы (РЭС), объединенные в единую энергетическую систему (ЕЭС) России.

Энергетическая система представляет собой совокупность электрических станций, электрических и тепловых сетей и узлов потребления, объединенных процессом производства, передачи и распределения электроэнергии и тепловой энергии по потребителям.

Электроэнергетика - ведущая часть энергетики, обеспечивающая электрификацию страны на основе рационального производства и распределения электрической энергии. Электроэнергетика имеет важнейшее значение в хозяйстве любой страны, что объясняется таки­ми преимуществами электрической энергии перед энергией других видов, как относительная легкость передачи ее на большие расстояния, распределе­ния между потребителями, а также преобразования в другие виды энер­гии (механическую, тепловую, химическую, световую и др.).

В силу специфики своего производства электроэнергетика занимает особое положение. В электроэнергетике хи­мическая энергия, запасенная в топливе, энергия падения воды, солнеч­ная, ветровая и другие виды энергии проходят путь последовательного преоб­разования в тепловую, механическую и, наконец, в электри­ческую энергию. В основе такого преобразования лежат термодинамические циклы тепловых двигателей. Промежуточным продук­том в этом процессе преобразования энергии, получившим широкое потребительское значение, является тепловая энергия.

Важнейшими вопросами энергетики и электроэнергетики , нашедшими отражение в учебных дисциплинах специальности, являются:

Электропитающие системы и электрические сети;

Системы электроснабжения;

Релейная защита, автоматика и телемеханика (РЗАиТ) систем электроснабжения;

Переходные процессы в электроэнергетике;

Электромагнитная совместимость в электроэнергетике;

Надежность электроснабжения;

Информационные системы в управлении электроснабжением;

Энергосбережение и энергоаудит.

1. Общие вопросы энергетики

1.1. Энергетические ресурсы земли и их использование

Уровень материальной, а, в конечном счете, и духовной культуры людей находятся в прямой зависимости от количества энергии, имеющейся в их распоряжении. Самоограничение в использовании энергии тепла и электроэнергии входит в противоречие с естественным желанием человека жить комфортно в современном цивилизованном обществе. При этом население земли и потребности людей непрерывно растут. Структура мирового энергохозяйства к сегодняшнему дню такова, что практически 80% произведенной энергии на земле производится путем сжигания органического топлива. При этом попытки решить энергетические проблемы сегодняшнего дня увеличением числа тепловых электростанций обречены на провал в силу целого ряда причин, обусловленных как ограниченными ресурсами традиционных органических топлив и, как следствие, неизбежным ростом цен на них, так и возросшими требованиями к защите окружающей среды. Отсюда – стремление выработки национальных энергетических программ ведущими промышленными странами, обеспечивающими оптимизацию внутреннего энергетического баланса. При этом со стороны наиболее развитых в экономическом плане стран неизбежно стремление контроля мировых энергоресурсов и распространение влияния над их добычей и распределением.

Сама по себе энергия представляет собой ничто иное, как способность совершать ту или иную работу. Огромное количество энергии содержится в ископаемом топливе, деревьях, растениях, воздухе, воде, солнце, в самих людях и животных, однако процесс преобразования ее в полезную работу может быть как технически, так и экономически малоэффективным. При этом среди источников энергии различают возобновляемые и невозобновляемые природой, традиционные и нетрадиционные.

К возобновляемым источникам энергии условно относят источники энергии, которые в обозримом будущем, исчисляемым тысячелетиями, неиссякнут. К таким источникам энергии относят энергию рек, морей и океанов, солнечную, ветровую, геотермальную энергию, биоэнергию и др.

К невозобновляемым источникам энергии относят источники энергии, которые после преобразования их в иной вид энергии теряют возможность последующего использования. К таким источникам энергии относят ископаемые органические виды топлив (торф, уголь, горючие сланцы, нефть и продукты ее переработки, природный и искусственный газ, ядерное топливо и др.).

К традиционным источникам энергии относят источники энергии, которые используются для выработки электрической и тепловой энергии в традиционных энергетических установках – котельных установках, тепловых, атомных и гидравлических электростанциях. К таким источникам энергии относят торф, уголь, газ, мазут, ядерное топливо, а также возобновляемый природой источник энергии - гидравлическая энергия рек.

К нетрадиционным источникам энергии относят источники энергии, которые не являются общепринятыми для выработки электрической и тепловой энергии в традиционных энергетических установках. К таким источникам энергии относят энергию ветра, солнца, земли, морей и океанов и др. К нетрадиционной энергетике относят также водородную энергетику, биоэнергетику, энергетику вторичных ресурсов.

Потребление энергии – важный показатель жизненного уровня. К настоящему времени в России и Европейских странах производство электроэнергии на душу населения достигло в среднем 6-7 тысяч кВт∙ч, а в США и Канаде вдвое больше. При этом наблюдается ежегодный рост удельного энергопотребления в развитых странах.

Учитывая результаты прогнозов по запасам нефти и природного газа, которых хватит на 50-70 лет, и запасов угля, которых хватит на 600-1000 лет, можно считать, что на данном этапе развития науки и техники тепловые электростанции будут еще долгое время преобладать над остальными нетрадиционными источниками энергии. Из мировых запасов нефти, объем которых оценивают в 2 триллиона баррелей, около 900 миллиардов уже использовано. Поскольку уже началось существенное удорожание нефти и природного газа, следует ожидать, что тепловые электростанции, работающие на мазуте и газе, к концу 21-го века будут вытеснены станциями на угле. Пока же наблюдается сокращение добычи угля, что связано не столько с относительно низкой его калорийностью, сколько с проблемами добычи и транспортировки, а также ухудшения экологии за счет вредных выбросов в атмосферу при сжигании этого топлива в котельных установках.

На этом фоне экологически чистыми и практически неисчерпаемыми в обозримом будущем являются речные гидроресурсы, однако в Западной Европе они уже в значительной мере задействованы и возможности строительства новых гидроэлектростанций весьма проблематичны, поскольку создание гидростатического напора на равнинных реках приведет к неизбежному затоплению значительных территорий. Кроме того сооружение ГЭС сопряжено со значительными капитальными затратами и, соответственно, длительными сроками окупаемости. Вместе с тем, неиспользованных запасов гидроэнергии в ряде регионов планеты, в частности в Сибири, вполне достаточно, чтобы гидроресурсы рассматривать как традиционную альтернативу использованию органических невозобновляемых ресурсов.

Что касается запасов ядерного топлива, то по прогнозам специалистов его запасов хватит не менее чем на 1000 лет при условии интенсивного развития реакторов-размножителей. Запасы урана и тория, если их сравнивать с запасами угля, не столь уж и велики, однако на единицу веса они содержат в себе энергии в миллионы раз больше, чем уголь. Из 1 кг урана можно получить столько же теплоты, сколько при сжигании примерно 3000 тонн каменного угля. Некоторые ученые и экологи в конце 1990-х годов говорили о скором запрещении государствами Западной Европы атомных электростанций, но, исходя из современных анализов сырьевого рынка и потребностей общества в электроэнергии, эти утверждения выглядят неуместными.

Учитывая естественное истощение ископаемых топлив, все больше говорят о необходимости в 21-м веке начала нового этапа развития земной энергетики, характеризуемого «щадящим» использованием невозобновляемых энергоресурсов. При этом необходимо учитывать, что нефть и газ нужны не только энергетике, но и химии, и транспорту, и сельскому хозяйству. Несомненно, что в будущем параллельно с линией интенсивного развития энергетики получит развитие и линия экстенсивного развития, характеризующаяся рассредоточением по центрам потребления экологически чистых источников энергии не слишком большой мощности, но с высоким КПД, удобных и надежных в эксплуатации. Яркий пример тому – интенсивное развитие нетрадиционной энергетики, в частности электрохимической и водородной энергетики, солнечной и ветровой энергетики, геотермальной и малой гидроэнергетики и др. Более подробно вопросы нетрадиционной энергетики рассмотрены в главе 5 настоящего пособия.

Энергетические ресурсы – это разные виды природных ресурсов, необходимых для выработки электрической энергии.

К энергетическим ресурсам относятся: топливные (горючие) полезные ископаемые – природный газ, нефть, каменный и бурый уголь, горючие сланцы и торф; водная энергия рек, особенно горных рек; энергия радиоактивных химических элементов (уран, плутоний); солнечная энергия; ветровая энергия; энергия морских приливов и отливов; геотермальная энергия (внутреннее тепло Земли).

Россия обладает большими запасами энергетических ресурсов. Так, по запасам (48 трл тонн) и добыче природного газа Россия – на 1-м месте в мире (1/3 часть всех мировых запасов). По запасам нефти (1/7 часть всех мировых запасов) Россия входит в первую десятку стран мира, а по ее добыче занимает 1-3 места. По угольным запасам (1/8 часть всех мировых запасов) занимает 1-е место в мире, а по добыче – 3-е место. Как по запасам, так и по добыче урановых руд Россия входит в первую десятку стран мира.

В России на 1 человека потребляется около 4000 кг условного топлива (у. т.), что почти в 2 раза больше среднемирового уровня (2100 кг).

Энергоресурсы в России находятся в основном в ее азиатской части (3/4 всего угля, более 2/3 нефти и свыше 9/10 газа), в то время как население и производство сконцентрированы в европейской части. Такая диспропорция создает проблему добычи и транспортировки энергоресурсов с востока на запад России.

В России из всех энергетических ресурсов важнейшее значение имеют топливные ресурсы (газ – 50%, нефть – 29%, уголь – 14%). Первое место в России по запасам и добыче горючих полезных ископаемых занимает Западная Сибирь, в северной части которой добывают природный газ, в средней – нефть, а на юге (в Кузбассе) – каменный уголь. Затем следуют районы Урало-Поволжья (нефть, газ, бурый уголь), Северного Кавказа (каменный уголь Донбасса, нефть и газ кавказского краевого прогиба), северо-восточной части Русской равнины (Печорский каменноугольный бассейн и Ухтинская нефтегазоносная провинция в Республике Коми) и Восточной Сибири (бурый уголь Канско-Ачинского бассейна, каменный уголь Иркутского бассейна, Южно-Якутский каменноугольный бассейн – месторождение Нерюнгри и Вилюйская нефтегазоносная провинция в Якутии). Большое значение имеют шельфовые участки морей, омывающих территорию России, на которых обнаружено углеводородное сырье. Промышленная добыча нефти и газа ведется в Каспийском, Баренцевом, Карском и Охотском морях.

Россия занимает 2-е место в мире по гидроэнергетическому потенциалу (энергия рек) (2500 млрд кВт·ч), большая часть которого сосредоточена в азиатской части (85%). На долю Дальнего Востока приходится 53%, Восточной Сибири – 26% суммарного гидропотенциала России. Гидроэнергия Енисея и Ангары от всего гидроэнергетического потенциала – 28%.

Основные месторождения урановой руды расположены в Восточной Сибири (Краснокаменск в Читинской области) и в Северном районе.

Благоприятные перспективы использования солнечной энергии есть на Северном Кавказе, в Нижнем Поволжье и в Забайкалье, т. е. в районах, где в году много ясных солнечных дней.

К числу нетрадиционных источников энергии относится ветровая энергия. Самые ветряные районы в расположены вдоль береговой линии Северного Ледовитого океана и в Калининградской области.

На Кольском полуострове, в Кислой губе есть небольшая электростанция, работающая на энергии морских приливов и отливов. Большие возможности для строительства такого рода электрических станций имеются на побережье Охотского моря, где приливы достигают 18 м.

Источники геотермальной энергии есть в сейсмически активных зонах Земли. Это Камчатка (в Долине гейзеров работает небольшая электростанция) и Курильские острова.

Состав ТЭК России

ТЭК – это группа отраслей, занимающихся добычей и переработкой топлива, выработкой электроэнергии и доставкой ее потребителю. На развитие ТЭК затрачивается в РФ почти 30% средств, выделяемых государством для промышленности. ТЭК связан с другими межотраслевыми комплексами. Например, транспортный комплекс перевозит грузы для ТЭК, МК производит оборудование, машины. Основа экспорта России – нефть, газ, уголь в зарубежные страны – также приходятся на ТЭК, они составляют 40% от общего объема экспорта по стране.

ТЭК делится на:

топливную промышленность (Добыча и переработка угля, нефти, газа, сланца и торфа. Переработка топлива происходит у мест добычи, на путях грузопотоков, в районах потребления топлива.)

электроэнергетику (Производство электроэнергии на ТЭС (ТЭЦ, КЭС), ГЭС, АЭС. Передача электроэнергии по ЛЭП.)

В состав ТЭК входят нефте- и газопроводы, образующие единую сеть.

Энергетика – фундамент экономики, основа всего материального производства, ключевой элемент жизнеобеспечения страны и основа экспортной базы страны. Электроэнергетика – один из важнейших показателей уровня развития экономики и страны. Использование энергетических ресурсов – один из показателей уровня развития цивилизации. Без топлива и электроэнергии невозможно развитие любой отрасли экономики.

Энергетика является одним из факторов размещения экономики, т. к. ТЭК располагается вблизи крупных источников энергии (угольных и нефтяных бассейнов), мощных электростанций, у которых вырастают целые промышленные районы, создаются города и поселки, т. е. ТЭК играет районообразующую роль. Технический прогресс увеличивает расстояния, на которые передается топливо и электроэнергия. Это способствует развитию районов, бедных собственными источниками энергии, и более рациональному размещению экономики.

Роль электроэнергетики и обеспечивающей ее топливной промышленности в переводе всей экономики на современную техническую основу была определена в плане ГОЭЛРО в 1920 году, т. к. на использование электроэнергии базировалась вся техника. Поэтому масштабы, технологический уровень, темпы развития всех отраслей экономики зависят от ТЭК. Внедрение прогрессивной техники и технологий, связанных с НТП, в экономику требует энерговооружения труда рабочих, т. е. затраты всех видов энергии в расчете на одного занятого в производстве.

Россия – единственная страна в мире, которая практически полностью обеспечена собственными энергоресурсами, но размещены они по территории страны неравномерно. Свыше 90% запасов приходится на Сибирь и Восток. В Западной Сибири добывается 70% нефти и газа, 50% угля, а 75% энергии потребляется в европейской части страны. Это является основной экономико-географической проблемой энергетики России, т. к. требует перевозок на огромные расстояния.

Задачи для перспективного развития ТЭК:

увеличение инвестиций

внедрение новых технологий во все отрасли ТЭК, а также создание энергосберегающих технологий

пересмотр взаиморасчетов со странами СНГ, т. к. ТЭК обслуживает и страны СНГ

использование нетрадиционных источников энергии

Виды энергетических ресурсов:

Топливные (уголь, нефть, газ, сланцы, торф).

Гидроресурсы (сила падающей воды, приливов и отливов).

Атомные ресурсы – атомная энергия урана, радия, тория.

Нетрадиционные ресурсы (энергия солнца, ветра, геотермальная энергия).

Из суверенных государств СНГ:

Украина обеспечена углем и частично нефтью и газом

Казахстан – углем и нефтью (п-ов Магышлак и Тэнгизское месторождение)

Азербайджан – нефтью и газом

Туркменистан – газом и нефтью

Узбекистан – газом

В других государствах или совсем отсутствуют топливные ресурсы или есть небольшие месторождения (Молдавия – нет, Грузия – уголь, Армения – ГЭС, Киргизстан – уголь).

ТЭБ – топливно-энергетический баланс.

Развитие хозяйства связано с непрерывным ростом ТЭК при одновременном проведении жесткой политики энергосбережения. Чтобы учитывать пропорции в добыче различных видов топлива, производстве энергии и распределении их между различными потребителями, используют ТЭБ.

Соотношение добычи различных видов топлива и выработки энергии (приход) и использовании их в экономике (расход) называют ТЭБ . Поскольку при сгорании 1 кг топлива выделяется неодинаковое количество топлива, топливный баланс рассчитывают в единицах условного топлива. Для составления ТЭБ все виды топлива переводят в условные. Теплота сгорания 1 кг каменного угля определена в 2000 ккал, а тепловой коэффициент = 1. 1 кг – 2 Квт/час электроэнергии с учетом КПД электростанций.

В системе ТЭК от добычи горных ископаемых и производства электроэнергии на электростанциях до потребления топлива и электроэнергии коэффициент полезного использования ресурсов = 43%. Это значит, что 57% теряются ежегодно на электростанциях, при транспортировке. Поэтому необходимо принимать меры, направленные на сбережение топлива и электроэнергии.

Таким образом, с 50 по 93 год ТБ превратился из угольного в нефтегазовый. Начиная с 1990 года, перспективное значение принимает газ и уголь открытой добычи. В целом же, пока на долю нефти и газа приходится около 70% всей добычи и использования топлива.

3. Роль и значение ТЭК для экономики и внешней торговли Росссии

Проблемы и угрозы энергетической безопасности России

Соотношение, выражающее первый закон термодинамики, часто записывают в другой форме:

Q = ΔU + A .

Второй закон связан с понятием энтропии, являющейся мерой хаоса (или мерой порядка). Второй закон термодинамики гласит, что для вселенной в целом энтропия возрастает.

Существует два классических определения второго закона термодинамики:

Кельвина и Планка

Не существует циклического процесса, который извлекает количество теплоты из резервуара при определенной температуре и полностью превращает эту теплоту в работу. (Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме поднятия груза и охлаждения резервуара теплоты)

Клаузиуса

Не существует процесса, единственным результатом которого является передача количества теплоты от менее нагретого тела к более нагретому. (Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара)

Оба определения второго закона термодинамики опираются на первый закон термодинамики, утверждающий, что энергия убывает.

Циклы ЭУ

11.12.13 .

Теплопроводность - это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Конвекция осуществляется путем перемещения в пространстве не­равномерно нагретых объемов среды. При этом перенос теплоты не­разрывно связан с переносом самой среды.

Тепловое излучение характеризуется переносом энергии от одного тела к другому электромагнитными волнами.

В гидравлике различают следующие характеристики потока: живое сечение, смоченный периметр, гидравлический радиус, расход, средняя скорость.

Живым сечением потока называется поверхность (поперечное сечение), нормальная ко всем линиям тока, его пересекающим, и лежащая внутри потока жидкости. Площадь живого сечения обозначается буквой Й. Для элементарной струйки жидкости используют понятие живого сечения элементарной струйки (сечение струйки, перпендикулярное линиям тока), площадь которого обозначают через dЙ.

Смоченный периметр потока – линия, по которой жидкость соприкасается с поверхностями русла в данном живом сечении. Длина этой линии обозначается буквой c.

В напорных потоках смоченный периметр совпадает с геометрическим периметром, так как поток жидкости соприкасается со всеми твёрдыми стенками.

Гидравлическим радиусом R потока называется часто используемая в гидравлике величина, представляющая собой отношение площади живого сечения S к смоченному периметру c:

Закон (уравнение) Бернулли является (в простейших случаях ) следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Плотность жидкости,

Скорость потока,

Высота, на которой находится рассматриваемый элемент жидкости,

Давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости,

Ускорение свободного падения.

Уравнение Бернулли также может быть выведено как следствие уравнения Эйлера, выражающего баланс импульса для движущейся жидкости .

В научной литературе закон Бернулли, как правило, называется уравнением Бернулли (не следует путать с дифференциальным уравнением Бернулли),теоремой Бернулли или интегралом Бернулли .

Константа в правой части часто называется полным давлением и зависит, в общем случае, от линии тока.

Размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Следует обратить внимание на то, что третье слагаемое по своему происхождению является работой сил давления (см. приводимый в приложении вывод уравнения Бернулли) и не представляет собой запаса какого-либо специального вида энергии («энергии давления» ).

Соотношение, близкое к приведенному выше, было получено в 1738 г. Даниилом Бернулли, с именем которого обычно связывают интеграл Бернулли . В современном виде интеграл был получен Иоганном Бернулли около 1740 года.

Для горизонтальной трубы высота постоянна и уравнение Бернулли принимает вид: .

Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности : .

Согласно закону Бернулли, полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.

Полное давление состоит из весового , статического и динамического давлений.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарныхпотоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины - гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для приближённого описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.

Цепна́я я́дерная реа́кция - последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируетсянейтронами

Полученными при делении ядер в предыдущем поколении.

Цепные реакции широко распространены среди химических реакций, где роль частиц с неиспользованными связями выполняют свободные атомы илирадикалы . Механизм цепной реакции при ядерных превращениях могут обеспечить нейтроны , не имеющие кулоновского барьера и возбуждающие ядра при поглощении. Появление в среде необходимой частицы вызывает цепь следующих, одна за другой реакций, которая продолжается до обрыва цепи вследствие потери частицы-носителя реакции. Основных причин потерь две: поглощение частицы без испускания вторичной и уход частицы за пределы объёма вещества, поддерживающего цепной процесс. Если в каждом акте реакции появляется только одна частица-носитель, то цепная реакция называется неразветвлённой . Неразветвлённая цепная реакция не может привести к энерговыделению в больших масштабах.

При работе реактора в тепловыводящих элементах (твэлах), а также во всех его конструктивных элементах в различных количествах выделяется теплота. Это связано с торможением осколков деления, бета- и гамма- излучением осколков и ядер, испытывающих взаимодействие с нейронами, и, наконец, с замедлением быстрых нейронов. Осколки при делении ядра топлива классифицируются по скоростям, соответствующим температуре в сотни миллиардов градусов.

Действительно, Е=mu2=3RT, где Е - кинетическая энергия осколков, МэВ; R=1,38*10-23 Дж/К - постоянная Больцмана. Учитывая, что 1 МэВ=1,6*10-13 Дж, получим 1,6*10-6 Е=2,07*10-16 Т, Т=7,7*109 Е. Наиболее вероятные значения энергии для осколков деления равны 97 МэВ для легкого осколка и 65 МэВ для тяжелого. Тогда соответствующая температура для легкого осколка равна 7,5*1011 К, тяжелого – 5*1011 К. Хотя достижимая в ядерном реакторе температура теоретически почти неограниченна, практически ограничения определяются предельно допустимой температурой конструкционных материалов и тепловыделяющих элементов.

Особенность ядерного реактора состоит в том, что 94% энергии деления превращается в теплоту мгновенно, т.е. за время, в течение которого мощность реактора или плотность материалов в нем не успевает заметно измениться. Поэтому при изменении мощности реактора тепловыделение следует без запаздывания за процессом деления топлива. Однако при выключении реактора, когда скорость деления уменьшается более чем в десятки раз, в нем остаются источники запаздывающего тепловыделения (гамма- и бета-излучение продуктов деления), которые становятся преобладающими.

Мощность ядерного реактора пропорциональна плотности потока нейронов в нем, поэтому теоретически достижима любая мощность. Практически же предельная мощность определяется скоростью отвода теплоты, выделяемой в реакторе. Удельный теплосъем в современных энергетических реакторах составляет 102-103 МВт/м3. От реактора теплота отводится циркулирующим через него теплоносителем. Характерной особенностью реактора является остаточное тепловыделение после прекращения реакции деления, что требует отвода теплоты в течение длительного времени после остановки реактора. Хотя мощность остаточного тепловыделения значительно меньше номинальной, циркуляция теплоносителя через реактор должна обеспечиваться очень надежно, так как остаточное тепловыделение регулировать нельзя. Удаление теплоносителя из работавшего некоторое время реактора категорически запрещено во избежание перегрева и повреждения тепловыделяющих элементов.

Энергетический ядерный реактор - это устройство, в котором осуществляется управляемая цепная реакция деления ядер тяжелых элементов, а выделяющаяся при этом тепловая энергия отводится теплоносителем. Главным элементом ядерного реактора является активная зона. В нем размещается ядерное топливо и осуществляется цепная реакция деления. Активная зона представляет собой совокупность определенным образом размещенных тепловыделяющих элементов, содержащих ядерное топливо. В реакторах на тепловых нейтронах используется замедлитель. Через активную зону прокачивается теплоноситель, охлаждающий тепловыделяющие элементы. В некоторых типах реакторов роль замедлителя и теплоносителя выполняет одно и то же вещество, например обычная или тяжелая вода. Для управления работой реактора в активную зону вводятся регулирующие стержни из материалов, имеющих большое сечение поглощения нейтронов. Активная зона энергетических реакторов окружена отражателем нейтронов - слоем материала замедлителя для уменьшения утечки нейтронов из активной зоны. Кроме того, благодаря отражателю происходит выравнивание нейтронной плотности и энерговыделения по объему активной зоны, что позволяет при данных размерах зоны получить большую мощность, добиться более равномерного выгорания топлива, увеличить продолжительность работы реактора без перегрузки топлива и упростить систему теплоотвода. Отражатель нагревается за счет энергии замедляющихся и поглощаемых нейтронов и гамма-квантов, поэтому предусматривается его охлаждение. Активная зона, отражатель и другие элементы размещаются в герметичном корпусе или кожухе, обычно окруженном биологической защитой.

1. КЛАССИФИКАЦИЯ ЯДЕРНЫХ РЕАКТОРОВ

На практике перевод ядерной энергии в тепловую (и в электрическую) проводят на устройствах, называемых ядерными реакторами. Ядерный (атомный) реактор - устройство, в активной зоне которого осуществляется контролируемая самоподдерживающаяся цепная реакция деления ядер некоторых тяжелых элементов под действием нейтронов. Эта реакция представляет собой самоподдерживающийся процесс деления ядер изотопов урана (или делящихся изотопов других элементов) под действием нейтронов, которые благодаря отсутствию электрического заряда легко проникают в атомные ядра. Выделяют четыре группы ядерных реакторов : 1. Ядерные реакторы, использующиеся в качестве источников электрической и тепловой энергии (энергетические); 2. Ядерные реакторы, использующиеся для получения различных видов излучения (в том числе- исследовательские); 3. Промышленные реакторы военного назначения, производящие оружейный плутоний; 4. Ядерные реакторы – размножители, наработчики новых радионуклидов, в том числе – нового ядерного топлива, трансплутониевых элементов, энергетического плутония и т.п. (реакторы – конвертеры и реакторы – бридеры).

Основные типы энергетических ядерных реакторов: -электрические ядерные реакторы АЭС (используются для выработки тепловой энергии, преобразующейся с помощью турбогенераторов в электрическую) -элекроэнергетические (термоэлектрические или термоэмиссионные) ядерные реакторы (с безмашинным преобразованием тепловой энергии в электрическую); -высокотемпературные теплоэнергетические ядерные реакторы для АСТ (производят высокопотенциальную тепловую энергию, непосредственно используемую в химической или металлургической промышленности для осуществления различных химических реакций, опреснения морской воды или получения энергоносителей, например, водорода); -теплоэнергетические ядерные реакторы (производят тепловую энергию на атомных станциях теплоснабжения, предназначены для промышленной и бытовой теплофикации) К энергетическим реакторам относятся также судовые, или транспортные ядерные реакторы; реакторы ядерных ракетных двигателей; двухцелевые электроэнергетические реакторы - размножители, вырабатывающие тепловую энергию и ядерные материалы, которые могут быть использованы для производства нового ядерного топлива; термоэмиссионные реакторы-преобразователи космических ядерно- энергетических установок (в том числе – генерирующих лазерное излучение). В последние годы проводятся работы созданию лазеров с ядерным возбуждением. Изучаются перспективы использованию импульсных ядерных реакторов для возбуждения рентгеновских и гамма-лазеров. Основные типы ядерных реакторов для получения различных видов излучения: -исследовательские ядерные реакторы (служат источниками нейтронного и гамма-излучения для научных и технических целей, в частности облучения реакторных материалов - материаловедческие реакторы -промышленные ядерные реакторы (используются для производства плутония и других делящихся радиоактивных изотопов) -облучательные ядерные реакторы (предназначены для обработки материалов нейтронным или гамма- излучением в целях улучшения их свойств) -хемоядерные реакторы, использующие излучение для ускорения химических реакций -реакторы-источники нейтронов для активационного анализа нуклидного состава материалов -реакторы для биомедицинских целей и обработки пищевых продуктов -импульсные реакторы-гамма-лазеры, в которых энергия излучения, включая энергию осколков деления, используется для накачки энергии в активное вещество лазеров. Замечание. Часто реактор совмещает несколько функций. Например, исследовательский реактор СМ, дающий самую большую в мире плотность потоков тепловых нейтронов, позволяет решать проблемы ядерной физики и материаловедения, и одновременно нарабатывать тяжёлые актиниды (вплоть до эйнштейния), в том числе – военного назначения. Ядерные реакторы подразделяются на различные типы не только по назначению, но и по физическим, техническим и эксплуатационным признакам. По физическим признакам различают реакторы на тепловых и быстрых нейтронах; реакторы уранового, плутониевого или ториевого цикла; реакторы – размножители (бридеры). Техническая классификация проводится по признакам: -вид теплоносителя и замедлителя (водяные тепловые ядерные реакторы с легководным, тяжеловодным или графитовым замедлителем, реакторы на быстрых нейтронах с натриевым или гелиевым теплоносителем, реакторы с органическим теплоносителем и замедлителем); -агрегатное состояние водного теплоносителя (водо-водяные энергетические реакторы с водой под давлением, газовые реакторы, пароохлаждаемые реакторы на быстрых нейтронах); -элемент, в котором создается давление теплоносителя (корпусные, канальные, канально-корпусные ядерные реакторы); -число контуров теплоносителя (реакторы однокорпусные, с прямым паро- или газотурбинным циклом, двухкорпусные с парогенератором и трехкорпусные - с промежуточным контуром, отделяющим первый реакторный контур от паросилового контура); -структура и форма активной зоны (гетерогенные и гомогенные ядерные реакторы с активными зонами в форме цилиндра, параллелепипеда или сферы); -время действия (ядерные реакторы непрерывного действия, импульсные, прерывистого действия). Реакторы классифицируются по типу используемого теплоносителя. Упомянем основные из них: Реактор с водой под давлением. В таких реакторах замедлителем и теплоносителем служит вода. Нагретая вода перекачивается под давлением в теплообменник, где тепло передается воде второго контура, в котором вырабатывается пар, вращающий турбину. Кипящий реактор. В таком реакторе кипение воды происходит непосредственно в активной зоне реактора и образующийся пар поступает в турбину. В большинстве кипящих реакторов вода используется и как замедлитель, но иногда применяется графитовый замедлитель. Реактор с жидкометаллическим охлаждением. В таком реакторе для переноса теплоты, выделяющейся в процессе деления в реакторе, используется жидкий металл, циркулирующий

20.

Преобразование энергии электростанциями может быть разных типов, как гидравлическими, так и тепловыми (в их число входят и атомные), это зависит от рода их первичного двигателя.

ТЭС (Тепловые Электрические Станции).

ТЭС делятся на станции с паровыми турбинами, газовыми турбинами и двигателями с внутренним сгоранием. Самыми распространенными являются паровые ТЭС.

На сегодняшний день 80% всего электричества производится на тепловых станциях. Их работа осуществляется на не возобновляемых ресурсах: нефть, торф, уголь, газ.

Турбины, соединенные с генераторами, приводятся в движение при помощи раскаленного пара воды. Если весь пар идет на вращение турбин, тогда станцию именуют кондиционерной или ГРЭС, такие станции располагаются у водоемов и мест добычи топлива, их мощность 22-750 кВ.
ТЭС предназначаются для снабжения предприятий и городов тепловой и электрической энергией.

АЭС (Атомные Электрические Станции).

Все большее внимание уделяется возведению Атомных электрических станций, так как они помогают сэкономить большое количество органических ресурсов для добычи электроэнергии.

«Сердцем» АЭС являются несколько реакторов, в которых происходит деление ядер урана, за счет этого получается тепловая энергия. Реактор состоит из отражателей, системы управления, системы охлаждения, активной зоны, системы контроля и регулирования корпуса.
А рабочую зону помещаются стержни урана или плутония, в специальной герметичной оболочке. В таких стержнях и происходят реакции деления ядер, при которых и выделяются большие количества теплоты.

Такие стержни называются твэлами (тепловыделяющими элементами). Количество таких элементов в зоне активности может достигать пару десятков тысяч.

Зона активности окружается отражателями, которые не позволяют нейтронам покинуть реактор. Так же реактор окружен специальной биологической защитой, в виде слоя бетона, толщина которого не позволяет радиации просочиться.

Такие электростанции экономят не возобновляемое топливо, для сравнения: 1 кг U-235 (уран), эквивалентен 2900 тонн угля.

ГЭС (Гидравлические Электрические Станции).

ГЭС возводятся на водопадах и река, чтобы использовать энергию от потоков воды. Это является возобновляемым источником энергии. Установленная мощность таких станций больше чем 20% общем мощности. Запуск агрегатов ГЭС не занимает более 30с времени, именно по этой причине резерв мощности осуществляется агрегатами станции. КПД ГЭС равен 85-90%.

Солнечные Электростанции.

Из-за того, что поток солнечных лучей у поверхности Земли довольно низок, что затрудняет проводимые работы по добыче электричества из энергии солнца, довольно сложный процесс. Благодаря современному оборудованию удалось достичь от 12 до 20% КПД. В Крыму такая станция вырабатывает 5 МВт.

Ветровые электростанции.

Ветрами богата прибрежная часть Северного Ледовитого Океана и его восточные районы. В этих частях могут быть установлены установки для использования силы ветра, мощность этих установок 300 кВт.

Состав и компоновка сооружений ГЭС определяются схемой концентрации напора. Как уже говорилось, существует основные схемы создания напора: плотинная и деривационная. Гидроэлектростанции, сооруженные по плотинной схеме, делятся, в свою очередь, на два типа: русловые и приплотинные. Деривационные ГЭС также делятся на два типа: с безнапорной и с напорной деривацией.

Основными сооружениями ГЭС, выполненными по плотинной схеме, являются плотины и здание ГЭС. При напоре до 25 – 30 м здание станции размещается в одном створе с плотиной и воспринимает напор. Такие гидроэлектростанции называются русловыми. При комплексном использовании водотока в состав гидроузла кроме плотины и здания ГЭС включаются сооружения, предназначенные для удовлетворения специфических нужд каждого участка комплекса (шлюз для водного транспорта, водозаборные сооружения для орошения и водоснабжения, рыбоходы и т.п.).

При напоре, превышающем 25–30 м, здание ГЭС размещается за плотиной в нижнем бьефе и уже не воспринимает напор. Такие ГЭС носят название приплотинных. При комплексном назначении гидроузла в него так же, как и в предыдущем случае, включаются сооружения неэнергетических участников комплекса. Поскольку в этой схеме здание ГЭС не воспринимает напор, для подачи воды к турбинам ГЭС необходимы водоприемники и турбинные трубопроводы. Компоновка гидроузлов с приплотинными ГЭС в значительной степени зависит от типа плотины и создаваемого ею напора.

Если в рассматриваемой схеме плотина ГЭС сооружена не из бетона, а из грунта или каменной наброски, то водоприемник, турбинные водоводы (трубопроводы) и водосбросы устанавливаются не совмещенными с плотиной.

Сооружения деривационных ГЭС располагаются в двух узлах – головном и станционном, соединенных между собой деривацией.

Головной узел ГЭС с безнапорной деривацией (рис. 6.5) состоит из плотины с водосбором и поверхностного водоприемника, а в случае надобности в нем дополнительно размещаются отстойник, грязеспуск, шугосброс и водоприемникдля неэнергетических потребителей воды.

Безнапорная деривация устраивается в виде открытого канала. Там, где деривационный канал пересекается с поперечно направленными оврагами, долинами, ручьями и реками, создаются сооружения для пропуска воды под или над каналами – дюкеры, трубы под каналами, лотки над каналом, а иногда и крупные мосты – акведуки для пересечения каналом широкой поперечной долины. У станционного узла канал заканчивается и переходит в напорный бассейн, откуда вода по турбинным трубопроводам поступает к турбинам, расположенным в здании ГЭС, и далее в отводящий канал и реку.

Каскады гидроэлектростанций и водохранилищ

Несколько ГЭС, последователь­но расположенных на одном водо­токе, образуют каскад, в котором могут быть плотинные и деривационные ГЭС. Проектирование и осуществление каскадов ГЭС имеет целью возможно более полное использование падения реки и ее стока в интересах всего народного хозяйства. При этом стремятся за счет создания водохранилищ наилучшим образом зарегулировать сток рек.

Местоположение каждого гидроузла, его напор, объем образуемо­го им водохранилища и т. п. выбираются на основе тщательного изу­чения природных условий и всестороннего технико-экономического анализа. Для того чтобы использовать возможно больший сток на дан­ной установке, створ плотины стремятся расположить ниже крупного притока, а для уменьшения ущерба от затопления створ плотины выбирают выше крупных городов. При выборе створа плотины часто решающее значение имеют топографические и геологические ус­ловия

При сооружении каскада ГЭС обычно оказывается целесообраз­ным некоторый подпор вышерасположенной ступени, благодаря чему падение реки используется более полно и может производиться глубо­кое суточное регулирование мощности ГЭС без существенных колеба­ний уровня НБ.

На рис. 7 приведена схема Волжско-Камского каскада ГЭС и водохранилищ. Река Волга имеет длину 3690 км и общее падение 250 м. Ступенчатой линией показаны проектные уровни воды после осуществления всей схемы реконструкции Волги.

Каскады ГЭС построены на многих реках - Енисее, Ангаре, Иртыше, Каме, Свири, Вуоксе, Днепре, Сырдарье, Нарыне, Чирчике, Куре, Риони, Ингури, Сулаке и др.

3. Комплексное использование водных ресурсов

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11

2.1. ОБЩИЕ ПОЛОЖЕНИЯ

Энергетическими ресурсами называют выявленные природные запасы различных видов энергии, пригодные для использования в широких масштабах для народного хозяйства. Их следует отличать вообще от природных запасов, которые практически бесконечны - это солнечная и геотермальная энергии, энергия океанов и морей, ветра, но эта энергия в обозримой перспективе в значительных масштабах применяться не будет. Основные виды энергетических ресурсов в современных условиях - уголь, газ, нефть, торф, сланцы, гидроэнергия, атомная энергия.

Энергетические ресурсы используют для получения того или иного вида энергии. Под энергией понимается способность какой-либо системы производить работу или тепло (Макс Планк). Соответственно, получение требуемого количества энергии связано с затратой некоторого количества ка-кого-либо рода энергетического ресурса.

Энергоресурсы, также как и энергия, могут быть первичными и вторичными. Первичные - ресурсы, имеющиеся в природе в начальной форме. Энергия, получаемая при использовании таких ресурсов, является первичной.

Среди первичных - выделяют возобновляемые и невозобновляемые.

Возобновляемые - восстанавливаются постоянно, например, гидроэнергия и энергия ветра, солнца и т. д.

К невозобновляемым - относятся те, запасы которых по мере их добычи необратимо уменьшаются, например уголь, сланцы, нефть, газ, ядерное топливо.

Подразделение на группы, а также перечень отдельных Первичных энергоресурсов, используемых в настоящее время, приведены ниже:

Ядерная энергия. геотермальная энергия,

Гравитационная энергия, энергия морских приливов.

Если исходная форма первичных энергоресурсов в результате превращения или обработки изменяется, то образуются вторичные энергоресурсы и, соответственно, вторичная энергия. Ко вторичным - относятся все первичные энергоресурсы после одного или нескольких превращений. Вторичные энергоресурсы - это большая часть топливных форм (бензин и другие нефтепродукты, электричество и т. д.), которые представлены ниже :

Для соизмерения ресурсов и определения действительной экономичности их расходования принято использовать понятие «условное топливо». Его низшую рабочую теплоту сгорания Qp принимают равной 29300 ГДж/кг (7000 Гкал/кг). Зная теплоту сгорания и количество натурального топлива, можно определить эквивалентное количество тонн условного топлива, (т у. т.):

Где Внат - количество натурального топлива, т.

При оценке ресурсов газа в условном топливе в формулу (2.1) Виат подставляется в тыс. м3, а теплота сгорания натурального топлива принимается в килоджоулях на 1 м3.

При необходимости оценки энергоресурсов в том числе гидроресурсов в кВт ¦ ч - 1 кВт ч приравнивается к 340 г у. т.

В современных условиях 80-85 % энергии получают, расходуя иево-зобновляемые энергоресурсы: различные виды угля, горючие сланцы, нефть, природный газ, торф, ядерное горючее.

Преобразование топлива в конечные виды энергии связано с вредными выбросами твердых частиц, газообразных соединений, а также большого количества тепла, воздействующих на окружающую среду.

Возобновляемые энергоресурсы (исключая гидроэнергетические) не нуждаются в транспортировке к месту потребления, но обладают низкой концентрацией энергии, в связи с чем преобразование энергии большинства возобновляемых источников требует больших затрат материальных ресурсов и, следовательно, больших удельных затрат денежных средств (руб/кВт) на каждую установку.

Возобновляемые источники энергии в экологическом отношении обладают наибольшей чистотой.

Из возобновляемых энергоресурсов в настоящее время в основном используются гидроэнергия и в относительно малых количествах энергия солнца, ветра, геотермальная энергия.

Из всех видов потребляемой энергии наибольшее распространение получила электроэнергия.

Поделиться: