Электролитические сплавы серебра. Серебра сплавы

Серебро известно человечеству с древних времен, но продолжает оставаться востребованным и в настоящее время. Его физические свойства резко отличаются от всех других благородных металлов.

Серебро очень пластично, хорошо поддается ковке и крайне тягуче. Степень мягкости ниже чем у золота, но выше меди. Металл обладает самой высокой электро- и теплопроводностью, отличной отражательной способностью, не вступает в реакцию с другими металлами и прекрасно полируется.

Ювелиры издавна используют серебро для изготовления украшений. Однако в чистом виде его не используют. Из-за своей мягкости изделие легко деформируется, царапается и теряет четкость рельефных узоров. Серебро боится сероводорода и озона и быстро темнеет, покрываясь черным трудноудалимым налетом. Для усиления прочностных характеристик серебро соединяют с некоторыми металлами: медью,алюминием, кадмием, никелем, цинком и родием. Такие добавки называют лигатурами.

Они придают серебру твердость и износоустойчивость. Из металла с полученными качествами ювелиры изготавливают высокохудожественные изделия самой сложной техники исполнения.

Чтобы оценить содержание серебра в сплаве пользуются знаком проба, который показывает какое количество граммов серебра содержится в одном килограмме сплава. Наиболее известны широкому потребителю 875, 925, 960 и 999 пробы.

При сплавлении с несколькими металлами используется более сложная технология. Так для получения сплава серебро-медь-цинк-кадмий каждый металл предварительно раскатывают в тончайшие пластины. Потом эти пластины заворачивают в серебряные листы, пакетируют, прессуют, отбивают и плавят.

Однако введение несоответствующего количества лигатуры в серебро, сплав может не улучшить свойства серебра, а резко ухудшить. Например, при введении в сплав 1% никеля, прочность его повышается, а уже при 2,6% сплав приобретает ломкость. Если в сплав серебра с медью добавить больше чем 9% олова, то такой сплав получится хрупким, начнет плавиться и окисляться.

Во избежание таких проблем ювелиры добавляют к серебру наиболее подходящий металл- медь. Обычная норма введения меди составляет от 5 до 50%. Изделия имеют прекрасный внешний вид и похожи на чистый металл.

Сплав шибуичи , полученный в Японии, состоит лишь на ¼ из серебра, а ¾ приходится на медь. Сплав с добавлением 5% золота тоже имеет такое же название. Сплав очень популярен в настоящее время. Изделия обычно патинируются для придания красивых оттенков. Широко применим в изготовлении браслетов, рукояток ножей, колец, сережек и брошей.


В России сплавы металлов регулируются ГОСТ. Согласно ему, серебро имеет краткое обозначение – Ср, золото- Зл, палладий – Пд, медь- М.

Сплав серебра и меди, формула его легко читается и понятна своей простотой.

Так сплав ЗлСрМ585-80 (именуемый красное золото) содержит в себе золота 585 частей, серебра – 80 частей, оставшиеся части составляет медь (1000-585-80=335). То есть слиток сплава такой марки весом 100 грамм содержит 58,5 г золота, 8г. серебра и 33,5 г. меди.

Наиболее известные и широкоприменяемые сплавы: Ag 960, Ag 925, Ag 875, Ag 830, Ag 800

  • Также стоит отметить так называемый сплав технического серебра

Металл марки серебра содержится от 49,5 до 50,5%. Железа не более 0,13%, свинца – 0,005%, сурьмы и висмута – по 0,002%. Остальное медь.

Вместе с тем, для защиты серебра от воздействия окружающей среды применяют и гальванические покрытия родированием, никелированием или нанесением слоя прозрачного лака. В случае длительного хранения изделие пассивируют воском.

Подделывать серебро начали еще в древние времени, когда оно ценилось даже выше чистого золота. Сегодня за этот ценный белый металл нередко выдают различные аналоги и сплавы. Чаще всего вместо серебра покупателям предлагают свинец, цинк или алюминий. Профессионал легко отличит подделку от натурального металла, а вот простому обывателю это сделать тяжело. К тому же многие интернет-магазины и сетевые толкучки изобилуют изделиями с пометкой «серебр.» или «silver pl.». Это указывает только на то, что изделие является посеребренным, а не полностью изготовленным из этого металла.

Такие изделия со временем начинают терять свой эстетический вид, чернеть, покрываться налетом и терять информацию о месте пробы и клейма. Если тщательная чистка только усугубила эти признаки, то можно смело утверждать, что изделие оказалось подделкой. Отличить серебро от цинка можно с помощью йода. Необходимо капнуть на вещь каплю средства и оставить изделие на некоторое время. Настоящее серебро не вступит в химическую реакцию с йодом, а цинк проявит себя посинением. К тому же цинковое изделие может оставлять на руках неприятные темные полосы и пятна.

Серебро очень легко спутать с мельхиором, представляющим собой сплав свинца, никеля и меди. Очень часто мельхиор включают в состав так называемого технического серебра. Прежде чем проводить с вещью какие-либо опыты, стоит более внимательно ее рассмотреть. На мельхиоре будет отсутствовать знак пробы, зато будет стоять клеймо «МНЦ». Если надпись на изделии не поддается расшифровке, его можно опустить воду и немного понаблюдать. Мельхиоровый сплав вызовет появление на поверхности воды легкого зеленоватого оттенка. Подтвердить свои предположения можно с помощью ляписного карандаша. Если изделие под его воздействием начнет темнеть, то можно смело утверждать, что в руках находится мельхиоровая вещь.

Реже за серебро выдают алюминий, хотя у этого металла несколько другой цвет, блеск и твердость. После нескольких дней носки такое ювелирное украшение начинает портиться на глазах. Чтобы отличить серебряное изделие от подделки необходимо вооружиться магнитом: алюминиевая вещь моментально к нему притянется. Из какого бы сплава ни была выполнена цепочка, кольцо или шкатулка, это всегда можно проверить, слегка поцарапав изделие иглой. Если под покрытием окажется слой темного коричневого металла, то можно говорить лишь о том, что вещь была подвергнута напылению серебром.

Бывает и так, что необходимо отличить серебро от белого золота. Первое нередко продают под видом дорогого металла, обработав декоративно-защитным покрытием из радия. В этом случае различить эти два металла на взгляд непрофессионалу будет практически невозможно. Здесь большое значение будет иметь цена изделия и его плотность. Необходимо опустить украшение в мензурку и взвесить на точных весах. Затем вычислить плотность и сравнить с «правильными» плотностями металлов. Существует и более кардинальный способ отличить серебро от белого золота – капнуть на изделие соляной кислотой. С золотом в этом случае ничего не будет, а серебро изменит свою структуру.


Серебро принадлежит к группе благородных металлов, весьма устойчивых на воздухе и во влажной атмосфере при обычной температуре. Серебро - пластичный металл, хорошо поддается ковке, легко прокатывается (можно прокатать серебряную фольгу толщиной 0,00001 мм), обладает очень высокой тепло- и электропроводностью.
Товарное серебро выпускается в виде слитков весом от 1 до 40 кг или гранул. Наиболее чистый металл, получаемый в промышленном производстве, содержит 99,99% серебра.
Примеси в серебре сильно влияют на его свойства.
Серебро в расплавленном состоянии сильно поглощает кислород, который выделяется при затвердевании металла, отчего отливки становятся пористыми.
Мышьяк, сурьма, висмут, свинец, олово и магний придают серебру хрупкость; висмут, кроме того, придает серебру серый цвет и вызывает расширение сплава при охлаждении.
Железо резко понижает температуру рекристаллизации серебра, поэтому является вредной примесью: наличие в сплаве 0,05% железа делает серебро настолько хрупким, что его становится невозможно прокатывать.
В чистом виде серебро применяется редко, чаще оно используется в сплавах.
Один из основных компонентов серебряных сплавов - медь; с увеличением содержания ее в серебре возрастает твердость сплава и изменяется цвет от белого до красновато-желтого. Вследствие большой твердости серебряномедные сплавы полируются лучше, чем чистое серебро. Ho недостаток этих сплавов - сильная ликвация при охлаждении. Сплавы меди с серебром (от 20 до 60% серебра) при 600-700° очень хрупкие.
Наряду с медносеребряными применяются сплавы серебра с цинком, кадмием, никелем, алюминием, магнием и оловом. Серебро с цинком легко сплавляется, дает однородный ковкий и вязкий сплав, хорошо поддающийся прокатке и волочению.
Наибольшее применение получило серебро для изготовления припоев и ляписа. Серебро, используемое для изготовления ляписа, должно содержать меди не более 0,002% и сумму свинца и висмута не более 0,1%. При наличии этих примесей в больших количествах ухудшается качество ляписа.
Серебряные припои стандартных марок содержат от 10 до 70% серебра, остальное медь и цинк. Добавка в обычный оловянносвинцовый припой до 3% серебра увеличивает его сопротивление усталости и ползучести.
Серебро, содержащее селен и теллур, не пригодно в качестве анодов для серебрения, так как эти примеси образуют шламы, препятствующие серебрению.
Серебро применяется также в химической промышленности в качестве предохранительного покрытия и в электротехнической промышленности; для контактов и в сплаве с другими металлами - в качестве материала сопротивления.
В серебросодержащих сплавах электросопротивления 10, 13 и 17% марганца: 3, 8 и 9% олова, остальное серебро. Эти сплавы обладают относительно высоким отрицательным температурным коэффициентом и электросопротивлением в холоднокатаном состоянии.
Добавка от 1 до 5% серебра в свинцовые бронзы, используемые для заливки вкладышей подшипников, работающих при высоких скоростях и больших нагрузках, намного удлиняет срок работы подшипников и лучше сохраняет смазку.
Сплавы серебра с оловом (7-10%), кадмием (5-18%)и сплавы серебра с оловом (до 25%), медью (до 6%) и цинком (до 2%) широко применяются в зубоврачебном деле.
Большое распространение в производстве ювелирных изделий и в промышленности получило покрытие серебром. Серебряные покрытия можно наносить сваркой, распылением, плакированием, горячим погружением, электроосаждением, химическим восстановлением, конденсацией и катодным распылением. Наиболее часто применяется плакирование и электроосаждение.
Добавка в нержавеющую хромоникелевую сталь (18% хрома и 8% никеля) 0,2-0,25% серебра повышает сопротивление ее коррозии, особенно в морской воде, улучшает механическую обрабатываемость и уменьшает склонность к наклепу.

Имя:*
E-Mail:
Комментарий:

Добавить

21.02.2019

Благодаря гравировке на ручках стандартную канцелярскую принадлежность можно превратить в уникальный и солидный предмет. Дело в том, что шикарная ручка их металла с...

21.02.2019

Уютный дом – мечта каждого. Особенно, если он построен своими руками. Сколько труда и души вкладывается в строительство, и какая это огромная ответственность, ведь все...

19.02.2019

Одна из самых крупных компаний в Объединённых Арабских Эмиратах, специализирующаяся на обработке металла и его последующей продаже, Dana Group сделала заявление по...

19.02.2019

По мере увеличения стоимости энергоносителей и иных ресурсов, в том числе и трудовых, увеличивается также цена любой изготавливаемой продукции во всех рыночных сферах,...

18.02.2019

При выборе новостройки казахстанцы пользуются не совсем верными критериями: ищут объект в желаемом районе и подешевле. В результате таких поисков процент обманутых...

18.02.2019

Остров Раб расположен на северном побережье страны и привлекает любителей природы своими многочисленными лесами. Это один из самых зеленых островов, который...

18.02.2019

При продаже квартиры в силу ряда причин возникают различные рисковые ситуации. Большая часть продавцов старается продать квартиру подороже и как можно быстрее найти...

18.02.2019

Фирма Blanco трудится на рынке с середины 1920-х годов, производят керамические мойки высочайшего качества, а также продукцию из иных материалов. Главной специализацией...

17.02.2019

Сегодня лучшими ограждающими конструкциями с возможностью передвижения являются автоматические ворота DoorHan. Ими легко управлять, они обладают высокой прочностью и...

14.02.2019

Фирма Bangladesh Steel Re-Rolling Mills, считающаяся самым крупным изготовителем стальных товаров на территории Бангладеш, рассказала о том, что она собирается вложить...

Cтраница 1


Замена серебра диэлектрическими покрытиями дает возможность получить светофильтры с коэффициентом пропускания в максимуме до 80 - 90 % при небольшой ширине полосы пропускания.  

Для замены серебра надо брать тугоплавкие металлы, причем неокисляющиеся, так как широко применяемые керамические массы требуют обжига в окислительной среде. Такими металлами являются платина и палладий; оба они дефицитны и дороги, что повышает стоимость монолитных конденсаторов и ограничивает развитие их производства.  

Для замены серебра разработаны окисные катализаторы окислительного дегидрирования метанола. Наиболее эффективными из них являются окислы молибдена и титана. Для повышения активности к окислам молибдена добавляют до 37 % окиси железа. Смешанные катализаторы более активны и селективны, процесс на них протекает при более низких температурах (350 - 400 С) и при большом избытке воздуха в реакционной смеси. Эти катализаторы постепенно вытесняют ранее принятые в промышленности серебряные.  

Медь считают одним из самых перспективных материалов для замены серебра в плавких элементах быстродействующих предохранителей. Медь дешевле серебра по меньшей мере в 300 раз и близка к нему по своим электрофизическим свойствам. Удельное электрическое сопротивление меди на 5 - 6 % выше, чем у серебра, что легко компенсируется увеличением сечения плавких элементов. Модуль упругости меди в 1 3 раза выше, чем у серебра, что неблагоприятно для циклического режима работы предохранителя. Теплопроводность меди примерно на 6 % меньше, чем у серебра, а температура плавления более чем на 120 С выше.  

Наметившиеся в настоящее время тенденции все более широкого внедрения керамических материалов вместо неф-тесодержащих пластмасс для изготовления изолирующих деталей электроустановочных устройств и замена серебра и серебросодержащих металлокерамических композиций на полноценные контактные материалы (сплавы), не имеющие в своем составе драгоценных металлов, для изготовления размыкающих контактов выключателей и переключателей получат в будущем наибольшее развитие.  

Ныне нейзильбер и родственный ему мельхиор (в мельхиоре нет цинка, но присутствует около 1 % марганца) применяются не только и не столько для замены столового серебра, сколько в инженерных целях: мельхиор наиболее стоек (из всех известных сплавов. Это отличный материал для кранов, клапанов и особенно конденсаторных трубок.  

Пыие нейзильбер п родственный ему мельхиор (в мельхиоре нет цинка, но присутствует около 1 % марганца) применяются не только н не столько для замены столового серебра, сколько в инженерных целях: мельхиор наиболее стоек (из всех известных сплавов.  

S-электроны легирующего металла заполняют вакансии cf - полосы палладия, снижая % А, причем действие добавки увеличивается по мере перехода от Ag к Sb и особенно резко при замене серебра на кадмий.  

Тонирование позитивных изображений в разные цвета, например коричневые, синие, зеленые и другие, основано на превращении металлического серебра в эмульсионном слое в какое-либо окрашенное соединение, а также путем замены серебра другим металлом или красителем. При тонировании окрашивается только само изображение, причем изображение в процессе тонирования может несколько усилиться или ослабиться. Состав тонирующих растворов и их количество определяются применяемым способом.  

В огромных количествах серебро расходуется для производства фото - и киноматериалов. Несмотря на настойчивые попытки замены серебра в данных материалах на другие металлы или вещества, проблема пока остается нерешенной.  

Усиление применяют для повышения визуальной или копировальной плотности изображения, а также исправления его контраста. Усиление кожет быть осуществлено путем наращивания на металлическое серебро, имеющееся в слое какого-либо вещества, образованием окрашенной соли серебра и заменой серебра другим веществом. Процесс усиления выполняется в одном или нескольких растворах.  

В случае же фосфоров КС1 - Ag кривая состоит из двух максимумов при 575 и 450 ту. Последний совпадает с К-полосой в спектре фосфора КС1 - Ag и несомненно обусловлен серебром, а не основанием, так как при замене серебра таллием этот пик не наблюдается. Кривая а рис. 70 изображает спектр поглощения рентгенизован-ного фосфора NaCl - - Ag с малой концентрацией активатора.  

Покрытие сплавом медь-оло-по, или бронзирование, применяют как для защиты от коррозии, так и для декоративной отделки поверхности изделий. Покрытие малооловянистым сплавом (10 - 20 % олова) золотисто-желтого цвета используют также в качестве подслои взамен медного и никелевого покрытий перед хромированием, Высоко-оловянистый сплав (40 - 45 % олова), так называемая белая бронза, в некоторых случаях может служить заменой серебра. Несмотря на то, что значение удельного электрического сопротивления сплава Си-Sn значительно выше, чем у серебра, в промышленной атмосфере, где есть примеси сернистых соединений, оно остается стабильным, п то время, как у серебра, возрастает в десятки рал. По этой причине покрытия белой бронзой рекомендуют для нанесения на электрические контакты.  

Обработку проявителем можно заменить обработкой аммиаком или сернистым натрием, которые осаждают одну лишь ртуть в виде черных окиси или сульфида. При действии аммиака происходит одновременное растворение хлористого серебра. Замена серебра упомянутыми соединениями ртути усиливает интенсивность почернения. Часто применяется усиление смесью из нитрата урана и железоцианистого калия. Реагируя с серебром, эта смесь отлагает на его зернах темный осадок из смеси железистоцианистых солей урана и серебра.  

Тантал может заменить также платину при изготовлении различной химической посуды. В промышленности искусственного шелка тантал применяется для производства мундштуков, в химической промышленности для облицовки аппаратуры и частей насосов, подвергающихся наибольшей коррозии. Тантал рекомендован для замены серебра в наконечниках искровых контактов и в качестве катода при анализе металлических солей. Высокая прочность, теплопроводность и сопротивление действию кислот делают возможным применение тантала в качестве материала электронагревателей для соляной и серной кислот.  

Получение поверхностей с заданными свойствами может быть осуществлено при электрохимическом выделении сплавов из двух и более металлов в условиях совместного разряда ионов . Электролитическое осаждение сплавов с каждым годом приобретает все большее значение для различных областей техники . Покрытия сплавами часто оказываются значительно более эффективными, чем изготовление деталей из металлургических сплавов. Электролитические сплавы обладают несколько иными свойствами, чем литые. Их повы-шенная твердость, в частности, может иметь большое значение для изделий, работающих в условиях механического износа .

Коррозионная стойкость электролитических сплавов нередко оказывается более высокой, чем у чистых металлов из-за особого строения осадков сплавов.

Серебрение - один из распространенных видов покрытий. Из драгоценных металлов оно получило наиболее широкое применение в гальванотехнике. Причины столь широкого использования этого металла - в его свойствах: серебро легко полируется, обладает высокой термо- и электропроводностью, характеризуется большой химической стойкостью, высокой (до 95%) отражательной способностью.

Но серебро обладает и рядом существенных недостатков: малой твердостью (60-85 кг/мм 2) и износостойкостью, а также склонностью к потускнению в течение времени, особенно в атмосфере промышленных газов. Химическая активность серебрянных покрытий особенно высока при наличии матовой неполированной поверхности .

Гальваническое осаждение сплавов серебра открывает перспективу получения покрытий с нужными для ювелирной промышленности качествами (высокой износостойкостью и твердостью), а также блестящих сплавов, обладающих повышенной, по сравнению с обычным матовым серебром, устойчивостью к атмосферным воздействиям.

Перспективными контактными материалами, а также материалами, которые могут найти широкое применение в ювелирной промышленности, являются сплавы серебра с сурьмой , никелем , палладием , кобальтом , висмутом , медью .

Сплавы серебра со свинцом , индием и таллием применяются как антифрикционное покрытия.

Совместное осаждение металлов дает возможность выделить в сплав такие металлы, получить которые в чистом виде из растворов не удается. Разработаны электролиты для осаждения сплавов на основе тугоплавких металлов, в частности, сплавов серебра с вольфрамом и молибденом .

Известно, что для совместного разряда двух видов ионов необходимо определенное соотношение активностей ионов в электролите, активностей металлов в сплаве и перенапряжений в условиях их совместного выделения.

Стандартные потенциалы металлов, совместное осаждение которых на катоде представляет практический интерес, могут отличаться более чем, на 2 в.

Наиболее эффективным способом изменения активности ионов является связывание их в комплексы. При этом про-исходит как изменение активности ионов в растворе, так и изменение кинетических условий их разряда, т. е. изменяется равновесная часть потенциала и величина поляризации .

По мнению некоторых исследователей , осаждение металлов из комплексных электролитов происходит путем разряда на катоде свободных ионов металла, образующихся при диссоциации комплексных ионов. Вследствие очень малой концентрации таких ионов возникает значительная концентрационная поляризация.

Другие исследователи полагают, что в процессе разряда непосредственное участие принимают сами комплексные ионы, адсорбирующиеся на поверхности катода. Восстановление этих ионов протекает при более высокой энергии активации, что вызывает большую химическую поляризацию.

Протекание процесса по первому механизму возможно в случае, когда комплексные ионы недостаточно прочны .

Кроме того, разряд простых ионов может происходить также в начале процесса, при малых плотностях тока. С увеличением скорости процесса при достижении потенциала разряда комплексных ионов процесс идет с химической поляризацией.

Е. И. Ахумов и Б. Л. Розен вывели уравнение, показывающее, что при постоянной плотности тока между логарифмом отношения содержания металлов в сплаве и логарифмом отношения концентраций их ионов в электролите должна существовать линейная зависимость:

Следовательно, необходимым условием при осаждении сплавов является постоянство состава электролита, а также рН электролита, изменение которых влияет на состав катодного осадка (сплава).

Так как фазовая структура сплавов в значительной степени определяет их физико-химические свойства, то особый интерес представляет изучение причин, вызывающих образование тех или иных фаз при электрокристаллизации сплавов .

Анализируя имеющуюся литературу, можно сделать вывод, что вопрос этот рассмотрен еще недостаточно полно, часто интервал составов полученных сплавов очень узок, что не позволяет выявить существование отчетливых зависимостей .

Наиболее интересными по своим физико-механическим свойствам являются сплавы, образующие в условиях электроосаждения пересыщенные твердые растворы.

Образование твердых растворов происходит на основе более благородного компонента (в частности, серебра) в качестве растворителя, пересыщение обычно не превышают 10-12% .

В соответствии с закономерностью Н. С. Курнакова у сплавов, образующих твердые растворы, наблюдается резкое увеличение твердости.

Для покрытия серебром и его сплавами применяют только растворы комплексных солей за исключением электролита для получения сплава серебро-селен .

В настоящее время получены двадцать три электролитических сплава серебра (табл. 1) и только десять из них - из нецианистых электролитов |30].

Таблица 1

В промышленности для серебрения применяются почти исключительно цианистые электролиты , известные в течение 140 лет и за это время не подвергшиеся каким-либо принципиальным изменениям.

Цианистые электролиты серебрения характеризуются высокой рассеивающей способностью, ~ 100%-ным выходом по току; осадки, полученные из них, имеют мелкокристаллическую структуру.

К главным недостаткам цианистых электролитов относятся: сложность их приготовления, недостаточная устойчивость, низкая производительность, а также высокая токсичность ,

В связи с перечисленными выше недостатками одной из важнейших задач современной гальваностегии является замена цианистых электролитов неядовитыми, а также интенсификация процессов серебрения. Кроме того, до сих пор практически еще не решена задача получения блестящих, не тускнеющих со временем покрытий.

Рассмотрим подробнее некоторые электролиты (см. табл. 2) для получения сплавов серебра.

Сплавы, полученные из пирофосфатного электролита, обладают высокой микротвердостью (230 кг/мм2), их износостойкость в 15 раз выше, чем у чистого серебра. Покрытие имеет достаточную прочность сцепления со сталью даже без применения подслоя. Сравнительные данные сплавов, полученных из пирофосфатных и цианистых электролитов, говорят о том, что свойства сплава, полученного из цианистого электролита, несколько хуже.

Таблица 2

№ п/п Состав электролита, г/л Режим электролиза, Д к, а/дм 2 , o C и т.д. Состав сплава (вес.% легирующего компонента) Твердость, кг/мм 2 Литературная ссылка
Компоненты Содерж. г/л
1 Ag (мет.)
Cu (мет.)
K 4 P 2 O 7 (своб.)
pH
6 - 7
14 - 15
100
11 - 13
Д к =0,5 - 0,7
t = 20 o C
η r = 95%
до 15% 230
2 Ag (мет.)
Cu (мет.)
Трилон Б
NH 4 OH дл pH
1 - 6
10 - 12
120 - 140
8 - 9
Д к =0,5 - 1,5
t комн.
η r = 50%
- 230
3 Ag (мет.)
Cu (мет.)
Трилон Б
KOH дл pH
1,7 - 5,4
17 - 20,8
100 - 120
8,5 - 9,5
Д к =0,5
Д к =3,0
t комн.
η r = 45 - 50%
15%
82%
60 - 70%
Max -
230

4 AgSCN
NiSO 4 .7H 2 O
Na 2 SO 4 .10H 2 O
1 - 50
8 - 12
100
Д к =1,2 ма/см 2
t=60 - 70 o C
4 - 20% -
5 Σ(Ag + Ni)
K 4 P 2 O 7
6
150
Д к =0,4 - 0,5
t =18 - 25
η r = 60-70% Перемешив.
Сплавы получены в широком диапазоне 180 (20% ат. Ni)
480 (80-86% ат. Ni)
6 Pd (мет.)
Ag (мет.)
Трилон Б
(NH 4) 2 CO 3
NH 3 (своб)
pH
0,15-0,20 моль/л
0,02 - 0,03
0,12 - 0,20
0,1 - 0,20
0,25 - 0,50
9,0 - 9,5
Д к =0,07 - 0,15
Д к =0,3 - 0,5
t= 20 - 40
η r = 90-95%
15-25%
40 - 50%
220 - 280
7 Ag (мет.)
Pd (мет.)
K 4 P 2 O 7
KCNS
0 - 14
10 - 17
20 - 70
130 - 180
Д к =0,4 - 0,5
t = 18-20
2 - 8% -
8 AgSCN
K 2 Pd(CNS) 4
KCNS
0,1 M
0,1 M
2M
- - -
9 Ag (мет.)
Pt (мет.)
LiCl
HCl (кислота)
3,4
5,1
500
10
Д к =0,2 - 0,25
t = 70 o C
η r = 20-80%
0 - 60 150-350%
10 AgNO 3
K 2 WO 4
(NH 4) 2 SO 4
(CHOH . CO 2 H)
pH
35
30
150
12
8 - 10
Д к = 0,8
η r = 106%
до 2% вес. H v в 1,5-2 раза больше чистого электролита серебрения
11 Ag (мет.)
KCN (своб.)
K 2 CO 3
Sb 2 O 3 (порошок)
KNaC 4 H 4 O 6 . 4H 2 O
40 - 50
50 - 60
до 70
20 - 100
20 - 40
Д к = 0.7 -0,8
t = 20 ± 4
0,5 - 0,6% 130 - 140 кгс/мм 2
12 Ag (мет.)
Sb (мет.)
К 4 / = 2,5 - 0,5
1 н.
1 ммоль/л
5 ммоль/л
8 мл/л
Д к = Д a = 2 - 6 ма/см 2
t = 20
0,13 - 4,5 ат.% -
14 Ag (мет.)
Bi (мет.)
K 4 P 2 O 7 (своб.)
KCNS (своб.)
К 4 ).

Повышение плотности тока на 1 а/дм 2 увеличивает процент содержания сурьмы в осадке на 0,5%. Применение плотности тока больше 1 а/дм 2 возможно при перемешивании и температуре электролита 50-60 o С, что при наличии в электролите сравнительно большой концентрации свободного цианистого калия крайне нежелательно.

Н. П. Федотьевым, П. М. Вячеславовым и Г. К. Буркат предложен нецианистый электролит для осаждения сплава серебро-сурьма с содержанием сурьмы 2-2,5%. За основу данного электролита взят синеродистороданистый электролит серебрения. Сплав представляет собой ряд твердых растворов, отмечается наличие в нем интерметаллических соединений состава АgSb и Аg 3 Sb. При содержании в осадке 8-10% сурьмы были получены зеркально-блёстящие осадки. В качестве депассиватора анодов применяется роданид калня. Анодная плотность тока не должна быть меньше катодной, так как в противном случае будет происходить химическое растворение анодов. Свойства сплава мало чем отличаются от свойств сплава, полученного из цианистого электролита, Данный электролит значительно менее токсичен, чем описаный выше.

Из растворов, содержащих 20 - 30 ммоль/л Н 2 SеО 3 , 2,5--10 ммоль/л АgNО 3 , подкисленных в зависимости от концентрации АgNО 3 15 - 60 мл/л азотной кислоты получены компактные осадки сплава серебро - селен. Состав и качество осадков зависят от соотношения Н 2 SеО 3 и АgNО 3 в католнте, их суммарной концентрации, температуры и плотности тока.

На серебряном катоде были получены компактные блестящие осадки, толщиной до 1 мкм состава от 0,13 до 4,5 ат.% селена; на платиновом катоде были получены только матовые осадки состава от 2,4 до 4,4 ат.% селена. Тонкие слои сплава селена с серебром обладают полупроводниковыми свойствами.

Опыты проводились в сосуде из оргстекла с диафрагмой из поливинилхлоридной ткани, с платиновыми анодами; катодами служила платиновая пластинка или медная (иногда платиновая), электролитически покрытая серебром.

Результаты работы очень интересны, так как это первый некомплектный электролит для получения сплавов серебра, но получение сплава серебра с селеном пока еще находится в стадии лабораторных разработок.

Для осаждения сплава серебро - висмут с 1,5 - 2,5 вес,% висмута предложен пирофосфатносинеродистый электролит. Сплав обладает высокой микротвердостью (190 кг/ мм 2), износостойкость его в 3 - 4 раза выше, чем чистого серебра.

При совместном осаждении серебра и висмута имеет место деполяризация разряда обоих компонентов сплава, увеличение предельных токов разряда серебра и висмута в сплав. Висмут осаждается в сплав с образованием твердого раствора висмута в серебре до 1,3 - 1,5 ат.% (по сравнению с 0,33 ат % висмута при температуре выше 200 o С по диаграмме состояния)

Электролит для получения сплава приготавливался на основе железистосииеродистого электролита путем добавления к нему пирофосфатного комплекса висмута (КВiP 2 О 7).

Электролит чувствителен к иону NO - 3 , поэтому железистосинеродистый электролит серебрения приготавливали из хлористого серебра, что, несомненно, является достаточно сложным. Осадки удовлетворительного качества получались в очень небольшом интервале рН электролита от 8,3 до 8,7.

В литературе имеются упоминания о возможности осаждения сплава серебро-висмут из комплексного аммиакатносульфосалицилатного электролита, но конкретных данных по составу электролита и составу осадков авторы не приводят.

Из всех вышеприведенных электролитов широкое промышленное применение нашел пока только пирофосфатно-роданистый электролит для получения сплава серебро-паладнй (табл. 2). В литературе недостаточно освещены еще вопросы получения зеркально-блестящих сплавов серебра, и особенно, из нецианистых электролитов, хотя именно такие покрытия вызывают повышенный интерес из-за их отличного декоративного вида и повышенной коррозионной стойкости. Сочетание обоих этих качеств является особенно ценным для ювелирной промышленности.

Задача состоит в разработке достаточно скоростных нетоксичных электолитов для осаждения блестящих сплавов серебра.

ЛИТЕРАТУРА

1. Скирстымояская Б. И. Успехи химии. 33,4 , 477(1964).

2. Федотьев Н. П., Бибиков Н. Н. Вячеславов П. М., Грилихеc С. Я. Электролитические сплавы. Машгиз, 1962.

3.Зытнер Л. А. Диссертация (к. т. н.). ЛТИ им. Ленсовета, 1967.

4. Ямпольский А. М. Электролитическое осаждение благородных и редких металлов. «Машиностроение», 1971.

6. Мельников П. С., Саифуллин Р. С., Воздвиженский Г. С. Защита металлов, т. 7, 1971.

7. Патент ФРГ, с 23 в.

8.Буркат Г. К., Федотьев Н. П., Вячеславов П. М. ЖПХ, ХLI, вып. 2, 427, 1968.

9. Кудрявцев Н. Т., Кушевич И. Ф., Жандарова И. А. Защита металлов, 7, 2, 206, 1971

10. Агарониянц А. Р., Крамер Б. Ш. др. Электролитические покрытия в приборостроении. Л., 1971.

11. Буркат Г. К., Федотьев Н. П. и др. ЖПХ, ХLI, 2, 291 - 296, 1968.

13. Вячеславов П. М., Грилихес С. Я. и др. Гальванотехника благородных и редких металлов. «Машиностроение», 1970.

14. Brenner A. Electrodeposition of Alloys, N.-J.-L., (1963)

15. Избекова О. В., Кудра О. К., Гаевская Л. В. Авт. свидетельство, СССР, кл. 236 5/32, № 293060, заявл. 10/Х 1969.

16. Струиина Т. П., Иваиов А. Ф. и др. Электролитические покрытия в приборостроении. 83, Л., 1971.

17. Кудрявцева И. Д., Попов С. Я., Скалозубов М. Ф. Исследования в области гальванотехники (по материалам межвузовского научного совещания по электрохимии), 73, Новочеркасск, 1965

18. Фрумкин А. Н., БагоцкиЙ В. С., Иофа 3. А., Кабанов В. Н. Кинетика электродных процессов. Изд. МГУ, 1952.

19. Ваграмян А. Т. Электроосаждснне металлов. Изд. АН СССР, 1950.

20. Кравцов В.И. Электродные процессы в растворах комплексов металлов, ЛГУ, 1959.

21. Le Blanc M., Jchick J. Z. phus. chem., 46, 213, 1903.

22. Левин. А. И. Тезисы докладов научно-технической конференции по теории и практике использования в гальванотехнике неядовитых электролитов. Изд. Казанского ун-та, 1963.

23. Андрющенко Ф. К., Орехова В. В., Павловская К. К. Пирофоефатные электролиты. Киев «Техника», 1965.

24. Ахумов Е. И.. Розен Б. Л. Доклады АН СССР, 109, № 6, 1149, 1956.

25. Буркат Г. К.. Диссертация(к. т. п.). ЛТП им. Ленсовета, 1966.

26. Пацаускас Э. И., Яиицкии И. В., Ласавичене И. А. Тр. АН Лит. ССР, Б., № 2(65), 61 - 7!, 1971.

27. Канкарис В. А., Пиворюнаите И. Ю. Химия и химическая технология. Научные труды вузов Лит. ССР, № 3, 1963.

29. Дубяго Е. И., Тертышная Р. Г., Осаковский А. И. Химическая технология. Республиканский межвед, тематмч. паучно-техн. сб., вып. 18, 8, 1971

30. Krohn and Bohn C, W. Plating, 58, № 3, 237-241, 1971.

32. Фантгоф Ж. Н., Федотьев Н. П., Вячеславов П. М. Покрытия драгоценными и редкими металлами. Материалы семинара, 105, М., 1968

33. Кудра О. К., Избекова О. В., Гаевская Л. В. Вестник Киевского политехнического ин-та, № 8, 1971.

34. Рожков Г. А., Гудпн Н. В. Труды Казанскою химпко-технологич. ин-та, в. 36, 178, 1967.

35. Грилнхес С. Я., Исакова Д. С. Всесоюзная научная конференция. Пути развития и последние достижения в области прикладной электрохимии (10-12 ноября 1971 г.), Л., 1971.

Поделиться: