Формула полной механической энергии математического маятника. Математический маятник: период, ускорение и формулы

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими ) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными .

Колебания – один из самых распространенных процессов в природе и технике. Крылья насекомых и птиц в полете, высотные здания и высоковольтные провода под действием ветра, маятник заведенных часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни, звук - это колебания плотности и давления воздуха, радиоволны - периодические изменения напряженностей электрического и магнитного полей, видимый свет - тоже электромагнитные колебания, только с несколько иными длиной волны и частотой, землетрясения - колебания почвы, биение пульса - периодические сокращения сердечной мышцы человека и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и различные другие. Несмотря на такое разнообразие, все они имеют между собой много общего.

Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения. Признаком колебательного движения является его периодичность .

Механические колебания – это движения, которые точно или приблизительно повторяются через одинаковые промежутки времени .

Примерами простых колебательных систем могут служить груз на пружине (пружинный маятник) или шарик на нити (математический маятник).

При механических колебаниях кинетическая и потенциальная энергии периодически изменяются.

При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль . В этом положении потенциальная энергия колеблющегося тела достигает максимального значения . Для груза на пружине потенциальная энергия – это энергия упругих деформаций пружины. Для математического маятника – это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия , его скорость максимальна. Тело проскакивает положение равновесия по закону инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией . Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии.

При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот .

Если в колебательной системе отсутствует трение, то полная механическая энергия при механических колебаниях остается неизменной.

Для груза на пружине :

В положении максимального отклонения полная энергия мятника равна потенциальной энергии деформированной пружины:

При прохождении положения равновесия полная энергия равна кинетической энергии груза:

Для малых колебаний математического маятника :

В положении максимального отклонения полная энергия мятника равна потенциальной энергии поднятого на высоту h тела:

При прохождении положения равновесия полная энергия равна кинетической энергии тела:

Здесь h m – максимальная высота подъема маятника в поле тяготения Земли, x m и υ m = ω 0 x m – максимальные значения отклонения маятника от положения равновесия и его скорости.

Гармонические колебания и их характеристики. Уравнение гармонического колебания.

Простейшим видом колебательного процесса являются простые гармонические колебания , которые описываются уравнением

x = x m cos (ωt + φ 0).

Здесь x – смещение тела от положения равновесия,
x m – амплитуда колебаний, то есть максимальное смещение от положения равновесия,
ω – циклическая или круговая частота колебаний,
t – время.

Характеристики колебательного движения.

Смещение х – отклонение колеблющейся точки от положения равновесия. Единица измерения – 1 метр.

Амплитуда колебаний А – максимальноеотклонение колеблющейся точки от положения равновесия. Единица измерения – 1 метр.

Период колебаний T – минимальный интервал времени, за который происходит одно полное колебание, называется. Единица измерения – 1 секунда.

T=t/N

где t - время колебаний, N - количество колебаний, совершенных за это время.

По графику гармоническихколебаний можно определить период и амплитуду колебаний:

Частота колебаний ν – физическая величина, равная числу колебаний за единицу времени.

ν=N/t

Частота – величина, обратная периоду колебаний:

Частота колебаний ν показывает, сколько колебаний совершается за 1 с.Единица частоты – герц (Гц).

Циклическая частота ω – число колебаний за 2π секунды.

Частота колебаний ν связана с циклической частотой ω и периодом колебаний T соотношениями:

Фаза гармонического процесса – величина, стоящая под знаком синуса или косинуса в уравнении гармонических колебаний φ = ωt + φ 0 . При t = 0 φ = φ 0 , поэтому φ 0 называют начальной фазой .

График гармонических колебаний представляет собой синусоиду или косинусоиду.

Во всех трех случаях для синих кривых φ 0 = 0:



только большей амплитудой (x" m > x m);



красная кривая отличается от синей только значением периода (T" = T / 2);



красная кривая отличается от синей только значением начальной фазы (рад).

При колебательном движении тела вдоль прямой линии (ось OX ) вектор скорости направлен всегда вдоль этой прямой. Скорость движения тела определяется выражением

В математике процедура нахождения предела отношения Δх/Δt при Δt → 0 называется вычислением производной функции x (t ) по времени t и обозначается как x" (t ).Скорость равна производной функции х(t ) по времени t.

Для гармонического закона движения x = x m cos (ωt + φ 0) вычисление производной приводит к следующему результату:

υ х =x" (t )= ωx m sin (ωt + φ 0)

Аналогичным образом определяется ускорение a x тела при гармонических колебаниях. Ускорение a равно производной функции υ(t ) по времени t , или второй производной функции x (t ). Вычисления дают:

а х =υ х "(t) =x"" (t )= -ω 2 x m cos (ωt + φ 0)=-ω 2 x

Знак минус в этом выражении означает, что ускорение a (t ) всегда имеет знак, противоположный знаку смещения x (t ), и, следовательно, по второму закону Ньютона сила, заставляющая тело совершать гармонические колебания, направлена всегда в сторону положения равновесия (x = 0).

На рисунке приведены графики координаты, скорости и ускорения тела, совершающего гармонические колебания.

Графики координаты x(t), скорости υ(t) и ускорения a(t) тела, совершающего гармонические колебания.

Пружинный маятник.

Пружинным маятником называют груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно .

Собственная частота ω 0 свободных колебаний груза на пружине находится по формуле:

Период T гармонических колебаний груза на пружине равен

Значит, период колебаний пружинного маятника зависит от массы груза и от жесткости пружины.

Физические свойства колебательной системы определяют только собственную частоту колебаний ω 0 и период T . Такие параметры процесса колебаний, как амплитуда x m и начальная фаза φ 0 , определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.

Математический маятник.

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела.

В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити N. При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести F τ = –mg sin φ. Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.

Математический маятник.φ – угловое отклонение маятника от положения равновесия,

x = lφ – смещение маятника по дуге

Собственная частота малых колебаний математического маятника выражается формулой:

Период колебаний математического маятника:

Значит, период колебаний математического маятника зависит отдлины нити и от ускорения свободного падения той местности, где установлен маятник.

Свободные и вынужденные колебания.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными .

Свободные колебания – это колебания, которые возникают в системе под действием внутренних сил, после того, как система была выведена из положения устойчивого равновесия.

Колебания груза на пружине или колебания маятника являются свободными колебаниями.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению .

В реальных условиях любая колебательная система находится под воздействием сил трения (сопротивления). При этом часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул, и колебания становятся затухающими .

Затухающими называют колебания, амплитуда которых уменьшается со временем .

Чтобы колебания не затухали, необходимо сообщать системе дополнительную энегрию, т.е. воздействовать на колебательную систему периодической силой (например, для раскачивания качели).

Колебания, совершающиеся под воздействием внешней периодически изменяющейся силы, называются вынужденными .

Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω 0 .

Если свободные колебания происходят на частоте ω 0 , которая определяется параметрами системы, то установившиеся вынужденные колебания всегда происходят на частоте ω внешней силы .

Явление резкого возрастания амплитуды вынужденных колебаний при совпадении частоты собственных колебаний с частотой внешней вынуждающей силы называется резонансом .

Зависимость амплитуды x m вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой или резонансной кривой .

Резонансные кривые при различных уровнях затухания:

1 – колебательная система без трения; при резонансе амплитуда x m вынужденных колебаний неограниченно возрастает;

2, 3, 4 – реальные резонансные кривые для колебательных систем с различным трением.

В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение, тем больше амплитуда вынужденных колебаний при резонансе.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.

ЦЕЛЬ: экспериментально проверить закон сохранения энергии поступательно-вращательного движения на маятнике Максвелла; определить скорость поступательного движения маятника по энергетическим и кинематическим соотношениям и сравнить их.

ОБОРУДОВАНИЕ: маятник Максвелла со сменными кольцами; электронный секундомер.

ОСНОВЫ ТЕОРИИ

Наиболее общей мерой движения материи является ее энергия. В механике это механическая энергия, соответствующая механическому движению тел. Различают два вида механической энергии: кинетическую и потенциальную.

Потенциальная энергия . Энергия, определяемаявзаимным расположением взаимодействующих тел и зависящая только от координат, называется потенциальной. РаботаА 12 , совершаемая консервативными силами при переводе системы из одного состояния в другое, равна убыли потенциальной энергии в этих состояниях.

А 12 = W 1 - W 2 , (1)

где W 1 иW 2 соответственно потенциальная энергия системы в состояниях 1 и 2.

Конкретный вид потенциальной энергии зависит от характера силового поля. В поле силы тяжести потенциальная энергия тела массы m имеет вид:

W = m·g·h , (2)

где g ускорение свободного падения;

h высота, отсчитанная от уровня, где потенциальная энергияW =0.

Кинетическая энергия . Это энергия, которой обладает тело (либо система тел) благодаря их движению. В случае, если тело движется поступательно со скоростьюv и одновременно вращается вокруг некоторой оси с угловой скоростью, то полная кинетическая энергия его движения равна:

где m масса тела;

I момент инерции.

Как видно, при вращательном движении роль линейной скорости играет угловая скорость, а роль массы момент инерции. Момент импульсаI зависит не только от массы, но и от распределения этой массы относительно оси вращения. ЗначениеI для некоторых тел правильной геометрической формы (длинный стержень, диск, шар, цилиндр) приведены в учебниках по курсу общей физики.

Закон сохранения энергии . Механическая энергия замкнутой системы тел, между которыми действуют консервативные силы остается постоянной. В таких системах при движении тела происходит превращение кинетической энергии в потенциальную и обратно, а полная энергия остается постоянной. (К консервативным силам относятся гравитационные, упругие, кулоновские и др.. Неконсервативными силами являются силы трения, сопротивления, неупругих деформаций.).

Механическая энергия сохраняется и в незамкнутых системах, если внешние силы не совершают работу, поскольку мерой измерения энергии является совершаемая работа.

МЕТОДИКА ЭКСПЕРИМЕНТА

Проверка закона сохранения энергии поступательно-вращательного движения тела выполняется на маятнике Максвелла. Маятник Максвелла это диск, закрепленный на оси. Ось, в свою очередь, подвешена на двух нитях, закрепленных верхними концами на кронштейнах.

Эти нити могут наматываться на ось, а при раскручивании их маятник совершает поступательно-вращательное движение, т.е. поднимается и опускается, вращаясь.

В процессе эксперимента выделены два основных состояния. В состоянии 1 маятник массой m находится на высотеh . Механическая энергия системы в этом состоянии равна только потенциальной энергии:

E 1 = W 1 = m·g·h. (4)

Отпустим маятник. Под действием равнодействующей сил тяжести и натяжения нити он начинает падать вниз (поступательное движение), а силы натяжения нитей приведут его во вращательное движение.

Рис. 1. Общий вид маятника Максвелла.

Т - сила натяжения нити;F g - сила тяжести.

В состоянии 2 маятник, опустившийся с высоты h , движется поступательно с скоростьюv, вращаясь при этом вокруг оси, проходящей через центр масс с угловой скоростью.Следовательно, механическая энергия системы в состоянии 2 складывается из кинетических энергий поступательного и вращательного движения:

. (5)

В выделенной системе (маятник в поле сил тяжести) должен выполняться закон сохранения энергии. Сила тяжести консервативная сила. Сила натяжения нити является внешней силой. но она не совершает работы, т.к. ее точка приложения при малом повороте маятника остается на месте. Следовательно:

. (6)

Скорость поступательного движения маятника связана с угловой скоростью соотношением

v = ·r, (7)

где r радиус оси маятника.

Тогда формула (6) примет вид:

2gh = v 2 (1+I/mr 2). (8)

А скорость поступательного движения маятника приобретает значение:

. (9)

Для проверки закона сохранения энергии вычислим скорость другим независимым способом, используя известные кинематические соотношения. Т. к. движение маятника является равноускоренным, то, если за время падения t маятник прошел путьh , его ускорение равно

a = 2h / t 2 . (10)

Отсюда скорость поступательного движения маятника в конце пути:

v = a t = 2h/t. (11)

Скорость в (9) зависит от момента инерции маятника, который можно изменять, устанавливая на диск различные кольца. Момент инерции маятника определяется как

I = I 0 + I Д + I К. (12)

где I 0 - момент инерции оси,

- момент инерции диска,

- момент инерции кольца,

R Д , R К - радиусы диска и кольца.

Радиус кольца берется как среднее значение между внутренним и внешним радиусами. Так как радиус оси маятника значительно меньше радиуса диска, моментом инерции оси можно пренебречь.

Логическая схема метода.

Если скорость, определенная из закона сохранения энергии по соотношению (9) будет равна скорости, определенной кинематически по формуле (11), то это подтверждает сохранение энергии для выделенной системы.

ВЫПОЛНЕНИЕ РАБОТЫ

1. Измерьте время падения маятника с одним из колец, указанных преподавателем.

2. Повторите измерения 5-10 раз.

3. Измерьте высоту падения и высоту подъема маятника.

4. Измерьте штангенциркулем диаметр оси маятника, внутренний и внешний диаметр кольца.

ОБРАБОТКА РЕЗУЛЬТАТОВ

1. Вычислите среднее значение времени падения и статистическую погрешность измеренияt .

2. Рассчитайте скорость v 1 по соотношению (11).

3. Вычислите погрешность измерения скорости v 1 по правилу вычисления погрешности для косвенных измерений.

4. Вычислите момент инерции маятника с кольцом. Массы диска и кольца нанесены на них.

5. Вычислите скорость маятника v 2 по соотношению (9).

6. Определите меру несовпадения = ( v 1 - v 2 )/ v 1 и сравните с относительной погрешностью v 1 = v 1 / v 1 .

ДОПОЛНИТЕЛЬНОЕ ЗАДАНИЕ

    Определите потери энергии по разности между высотой падения и последующей высотой подъема маятника.

    Вычислите среднюю эффективную силу трения, создающую потери энергии.

КОНТОЛЬНЫЕ ВОПРОСЫ

1. Какие существуют виды механической энергии? Дайте их определения.

2. Сформулируйте закон сохранения механической энергии системы и условия его выполнения.

3. Опишите превращение энергии для маятника Максвелла.

4. Что такое момент инерции тела? Чему равен момент инерции диска, кольца?

5. Как определяется скорость поступательного движения маятника Максвелла?

Основные понятия: затухающие колебания, свободные колебания, незатухающие колебания, вынужденные колебания, автоколебания .

Полная механическая энергия маятника E - сумма его потенциальной Е п = mgh и кинетической Е к = mυ 2 /2 энергий:

Е = Е п + Е к = mgh + mυ 2 /2. (1)

На рис.1 схематически представлено превращение потенциальной энергии математического маятника в кинетическую и наоборот.

Рис.1. Превращение энергии при колебательном движении математического маятника.

Когда маятник находится в т.А (точка, где смещение маятника от положения равновесия максимально), то его кинетическая энергия равна минимально возможному значению - нулю - Е к min = 0, а потенциальная энергия максимальна и равна E п max = mgh max . Таким образом, полная механическая энергия маятника в т.А в соответствии с (1) равна:

В точке А: Е = E п max + Е к min = mgh max + 0 = mgh max .

Когда маятник находится в какой-либо промежуточной точке между точками А (точка, где смещение маятника от положения равновесия максимально) и О (положение равновесия), то его полная механическая энергия E в соответствии с (1) равна:

В промежуточных точках: Е = Е п + Е к = mgh + mυ 2 /2 ,

Е п и Е к принимают некоторые промежуточные значения большие 0 и меньшие максимального значения: Е п = mgh < mgh max , Е к = mυ 2 /2 < mυ max 2 /2.

Когда маятник проходит точку О (положение равновесия), то его кинетическая энергия максимальна и равна Е к max = mυ max 2 /2, а потенциальная энергия в свою очередь теперь принимает нулевое значение Е п = 0:

В точке О: Е = E п min + Е к max = 0 + mυ max 2 /2 .

Таким образом, можно составить цепочку превращений одного вида энергии в другой при движении математического маятника от одной точки к другой (рис.1):

точка А -- точка N -- точка O -- точка M -- точка B --…..

E п max -- Е п + Е к -- Е к max -- Е’ п + Е’ к -- E п max -- …..

Е = Е п + Е к = mgh + mυ 2 /2 = Е к max = mυ max 2 /2 = E п max = mgh max (2)

Для пружинного маятника (рис.2) превращение энергии происходит аналогично.

Рис. 3. Автоколебательная система.

Перейти к следующему 34-му уроку: Распространение колебаний в среде. Волны.

Перейти к конспектов за 9 класс.

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести F τ = -mg sin φ (рис. 2.3.1). Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.

Если обозначить через x линейное смещение маятника от положения равновесия по дуге окружности радиуса l , то его угловое смещение будет равно φ = x / l . Второй закон Ньютона, записанный для проекций векторов ускорения и силы на направление касательной, дает:

Это соотношение показывает, что математический маятник представляет собой сложную нелинейную систему, так как сила, стремящаяся вернуть маятник в положение равновесия, пропорциональна не смещению x , а

Только в случае малых колебаний , когда приближенно можно заменить на математический маятник является гармоническим осциллятором , т. е. системой, способной совершать гармонические колебания. Практически такое приближение справедливо для углов порядка 15-20°; при этом величина отличается от не более чем на 2 %. Колебания маятника при больших амплитудах не являются гармоническими.

Для малых колебаний математического маятника второй закон Ньютона записывается в виде

Таким образом, тангенциальное ускорение a τ маятника пропорционально его смещению x , взятому с обратным знаком. Это как раз то условие, при котором система является гармоническим осциллятором. По общему правилу для всех систем, способных совершать свободные гармонические колебания, модуль коэффициента пропорциональности между ускорением и смещением из положения равновесия равен квадрату круговой частоты:

Эта формула выражает собственную частоту малых колебаний математического маятника .

Следовательно,

Любое тело, насаженное на горизонтальную ось вращения, способно совершать в поле тяготения свободные колебания и, следовательно, также является маятником. Такой маятник принято называть физическим (рис. 2.3.2). Он отличается от математического только распределением масс. В положении устойчивого равновесия центр масс C физического маятника находится ниже оси вращения О на вертикали, проходящей через ось. При отклонении маятника на угол φ возникает момент силы тяжести, стремящийся возвратить маятник в положение равновесия:

M = -(mg sin φ) d .

Здесь d - расстояние между осью вращения и центром масс C .

Рисунок 2.3.2.

Физический маятник

Знак «минус» в этой формуле, как обычно, означает, что момент сил стремится повернуть маятник в направлении, противоположном его отклонению из положения равновесия. Как и в случае математического маятника, возвращающий момент M пропорционален . Это означает, что только при малых углах, когда, физический маятник способен совершать свободные гармонические колебания. В случае малых колебаний

и второй закон Ньютона для физического маятника принимает вид

где ε - угловое ускорение маятника, I - момент инерции маятника относительно оси вращения O . Модуль коэффициента пропорциональности между ускорением и смещением равен квадрату круговой частоты:

Здесь ω 0 - собственная частота малых колебаний физического маятника .

Следовательно,

Более строгий вывод формул для ω 0 и T можно сделать, если принять во внимание математическую связь между угловым ускорением и угловым смещением: угловое ускорение ε есть вторая производная углового смещения φ по времени:

Поэтому уравнение, выражающее второй закон Ньютона для физического маятника, можно записать в виде

Это уравнение свободных гармонических колебаний.

Коэффициент в этом уравнении имеет смысл квадрата круговой частоты свободных гармонических колебаний физического маятника.

По теореме о параллельном переносе оси вращения (теорема Штейнера) момент инерции I можно выразить через момент инерции I C относительно оси, проходящей через центр масс C маятника и параллельной оси вращения:

Окончательно для круговой частоты ω 0 свободных колебаний физического маятника получается выражение:

С криншот квеста про определ ить планеты

Определение

Математический маятник - это колебательная система, являющаяся частным случаем физического маятника, вся масса которого сосредоточена в одной точке, центре масс маятника.

Обычно математический маятник представляют как шарик, подвешенный на длинной невесомой и нерастяжимой нити. Это идеализированная система, совершающая гармонические колебания под действием силы тяжести. Хорошим приближением к математическому маятнику массивный маленький шарик, осуществляющий колебания на тонкой длинной нити.

Галилей первым изучал свойства математического маятника, рассматривая качание паникадила на длинной цепи. Он получил, что период колебаний математического маятника не зависит от амплитуды. Если при запуске мятника отклонять его на разные малые углы, то его колебания будут происходить с одним периодом, но разными амплитудами. Это свойство получило название изохронизма.

Уравнение движения математического маятника

Математический маятник - классический пример гармонического осциллятора. Он совершает гармонические колебания, которые описываются дифференциальным уравнением:

\[\ddot{\varphi }+{\omega }^2_0\varphi =0\ \left(1\right),\]

где $\varphi $ - угол отклонения нити (подвеса) от положения равновесия.

Решением уравнения (1) является функция $\varphi (t):$

\[\varphi (t)={\varphi }_0{\cos \left({\omega }_0t+\alpha \right)\left(2\right),\ }\]

где $\alpha $ - начальная фаза колебаний; ${\varphi }_0$ - амплитуда колебаний; ${\omega }_0$ - циклическая частота.

Колебания гармонического осциллятора - это важный пример периодического движения. Осциллятор служит моделью во многих задачах классической и квантовой механики.

Циклическая частота и период колебаний математического маятника

Циклическая частота математического маятника зависит только от длины его подвеса:

\[\ {\omega }_0=\sqrt{\frac{g}{l}}\left(3\right).\]

Период колебаний математического маятника ($T$) в этом случае равен:

Выражение (4) показывает, что период математического маятника зависит только от длины его подвеса (расстояния от точки подвеса до центра тяжести груза) и ускорения свободного падения.

Уравнение энергии для математического маятника

При рассмотрении колебаний механических систем с одной степенью свободы часто берут в качестве исходного не уравнения движения Ньютона, а уравнение энергии. Так как его проще составлять, и оно является уравнением первого порядка по времени. Предположим, что трение в системе отсутствует. Закон сохранения энергии для совершающего свободные колебания математического маятника (колебания малые) запишем как:

где $E_k$ - кинетическая энергия маятника; $E_p$ - потенциальная энергия маятника; $v$ - скорость движения маятника; $x$ - линейное смещение груза маятника от положения равновесия по дуге окружности радиуса $l$, при этом угол - смещение связан с $x$ как:

\[\varphi =\frac{x}{l}\left(6\right).\]

Максимальное значение потенциальной энергии математического маятника равно:

Максимальная величина кинетической энергии:

где $h_m$ - максимальная высота подъема маятника; $x_m$- максимальное отклонение маятника от положения равновесия; $v_m={\omega }_0x_m$ - максимальная скорость.

Примеры задач с решением

Пример 1

Задание. Какова максимальная высота подъема шарика математического маятника, если его скорость движения при прохождении положения равновесия составляла $v$?

Решение. Сделаем рисунок.

Пусть ноль потенциальной энергии шарика в его положении равновесия (точка 0).В этой точке скорость шарика максимальна и равна по условию задачи $v$. В точке максимального подъема шарика над положением равновесия (точка A), скорость шарика равна нулю, потенциальная энергия максимальна. Запишем закон сохранения энергии для рассмотренных двух положений шарика:

\[\frac{mv^2}{2}=mgh\ \left(1.1\right).\]

Из уравнения (1.1) найдем искомую высоту:

Ответ. $h=\frac{v^2}{2g}$

Пример 2

Задание. Каково ускорение силы тяжести, если математический маятник имеющий длину $l=1\ м$, совершает колебания с периодом равным $T=2\ с$? Считайте колебания математического маятника малыми.\textit{}

Решение. За основу решения задачи примем формулу для вычисления периода малых колебаний:

Выразим из нее ускорение:

Проведем вычисления ускорения силы тяжести:

Ответ. $g=9,87\ \frac{м}{с^2}$

Поделиться: