Закон сохранения полной механической энергии. Закон сохранения и превращение энергии

«Физика - 10 класс»

Как изменяются потенциальная, кинетическая и полная механическая энергии тела при его свободном падении вниз? если тело брошено вверх?

Обратимся к простой системе тел, состоящей из земного шара и поднятого над поверхностью Земли тела, например камня.

Камень падает под действием силы тяжести. Силу сопротивления воздуха учитывать не будем. Изменение кинетической энергии камня равно работе сил тяжести:

ΔЕ к = A т (5.23)

Изменение потенциальной энергии равно работе силы тяжести, взятой с обратным знаком:

ΔЕ п = -А т (5.24)

Работа силы тяжести, действующей со стороны камня на земной шар, практически равна нулю. Из-за большой массы земного шара его перемещением и изменением скорости можно пренебречь. Из формул (5.23) и (5.24) следует, что

ΔЕ к = -ΔЕ п. (5.25)

Равенство (5.25) означает, что увеличение кинетической энергии системы равно убыли её потенциальной энергии (или наоборот). Отсюда следует, что

ΔЕ к + ΔЕ п = 0,

Δ (Е к + Е п) = 0. (5.26)

Изменение суммы кинетической и потенциальной энергий системы равно нулю.

Полная механическая энергия Е равна сумме кинетической и потенциальной энергий тел, входящих в систему:

Е = Е к + Е п. (5.27)

Так как изменение полной энергии системы в рассматриваемом случае согласно уравнению (5.26) равно нулю, то энергия остаётся постоянной:

Е = Е к + Е п = const. (5.28)

Закон сохранения механической энергии:

В изолированной системе в которой действуют консервативные силы, механическая энергия сохраняется .


Закон сохранения механической энергии является частным случаем общего закона сохранения энергии .

Общий закон сохранения энергии:

Энергия не создаётся и не уничтожается, а только превращается из одной формы в другую.


Учитывая, что в рассматриваемом конкретном случае Е п = mgh и закон сохранения механической энергии можно записать так:





Это уравнение позволяет очень просто найти скорость υ 2 камня на любой высоте h 2 над землёй, если известна начальная скорость камня на исходной высоте h 1 .

Чем мы пренебрегаем, когда говорим, что механическая энергия падающего камня сохраняется? Какие превращения энергии реально происходят при падении камня в воздухе?

Закон сохранения механической энергии (5.28) легко обобщается на случай любого числа тел и любых консервативных сил взаимодействия между ними. Под Е к нужно понимать сумму кинетических энергий всех тел, а под Е п - полную потенциальную энергию системы. Для системы, состоящей из тела массой m и горизонтально расположенной пружины (см. рис. 5.13), закон сохранения механической энергии имеет вид



Уменьшение механической энергии системы под действием сил трения.


Рассмотрим влияние сил трения на изменение механической энергии системы.

Если в изолированной системе силы трения совершают работу при движении тел относительно друг друга, то её механическая энергия не сохраняется. В этом легко убедиться, толкнув книгу, лежащую на столе. Из-за действия силы трения книга почти сразу останавливается. Сообщённая ей механическая энергия исчезает.

Сила трения совершает отрицательную работу и уменьшает кинетическую энергию. Но потенциальная энергия при этом не увеличивается.

Поэтому полная механическая энергия убывает. Кинетическая энергия не превращается в потенциальную.

Нагревание при действии сил трения легко обнаружить. Для этого, например, достаточно энергично потереть монету о стол. С повышением температуры, как известно из курса физики основной школы, повышается кинетическая энергия теплового движения молекул или атомов. Следовательно, при действии сил трения кинетическая энергия тела превращается в кинетическую энергию хаотично движущихся молекул.


Силы трения (сопротивления) неконсервативны.


Отличие сил трения от консервативных сил становится особенно наглядным, если рассмотреть работу тех и других на замкнутом пути. Работа силы тяжести, например, на замкнутом пути всегда равна нулю. Она положительна при падении тела с высоты h и отрицательна при подъёме на ту же высоту. Работа же силы сопротивления воздуха отрицательна как при подъёме тела вверх, так и при движении его вниз. Поэтому на замкнутом пути она обязательно меньше нуля.

В любой системе, состоящей из больших макроскопических тел, действуют силы трения. Следовательно, даже в изолированной системе движущихся тел механическая энергия обязательно убывает. Постепенно затухают колебания маятника, останавливается машина с выключенным двигателем и т. д.

Но убывание механической энергии не означает, что эта энергия исчезает бесследно. В действительности происходит переход энергии из механической формы в другие. Обычно при работе сил трения происходит нагревание тел, или, как говорят, увеличение их внутренней энергии.

Во всех процессах, происходящих в природе, как и в создаваемых приборах, устройствах, всегда выполняется закон сохранения и превращения энергии: энергия не исчезает и не появляется вновь, она может только перейти из одного вида в другой.

В двигателях внутреннего сгорания, паровых турбинах, электродвигателях и т. д. механическая энергия появляется за счёт убыли энергии других форм: химической, электрической и т. д.

Полной механической энергией системы тел называется сумма кинетической и потенциальной энергий:

Изменение кинетической энергии системы равно суммарной работе всех сил, действующих на тела этой системы:

∆Eк = Aпот + Aнепот + Aвнеш (1)

Изменение потенциальной энергии системы равно работе потенциальных сил с обратным знаком:

∆Eп = - Aпот (2)

Очевидно, что изменение полной механической энергии равно:

∆E = ∆Eп + ∆Eк (3)

Из уравнений (1-3) получим, что изменение полной механической энергии равно суммарной работе всех внешних сил и внутренних не потенциальных сил.

∆Eк = Aвнеш + Aнепот (4)

Формула (4) представляет из себя закон изменения полной механической энергии системы тел.

В чем состоит закон сохранения механической энергии ? Закон сохранения механической энергии состоит в том, что полная механическая энергия замкнутой системы остается неизменной.


4) Вращательное движение. Момент импульса. Тензор инерции. Кинетическая энергия и момент импульса твёрдого тела. Теоремы Кёнига и Штейнера-Гюйгенса.

Вращательное движение.

Вращательное движение - вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной.

При равномерном вращении (T оборотов в секунду),

§ Частота вращения - число оборотов тела в единицу времени.

,

§ Период вращения - время одного полного оборота. Период вращения T и его частота связаны соотношением .

§ Линейная скорость точки, находящейся на расстоянии R от оси вращения

§ Угловая скорость вращения тела

.

§ Кинетическая энергия вращательного движения

где I z - момент инерции тела относительно оси вращения. - угловая скорость

Момент импульса.

Момент импульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, не лежащей на линии движения, оно также обладает моментом импульса. Наибольшую, пожалуй, роль момент импульса играет при описании собственно вращательного движения.

Момент импульса замкнутой системы сохраняется.

Момент импульса частицы относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:

где - радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, - импульс частицы.

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса):

Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:

Тензор инерции.

Тензор инерции - в механике абсолютно твёрдого тела - тензорная величина, связывающая момент импульса тела и кинетическую энергию его вращения с его угловой скоростью:

где - тензор инерции, - угловая скорость, - момент импульса

Кинетическая энергия.

Кинетическая энергия - энергия механической системы, зависящая от скоростей движения её точек. Единица измерения в системе СИ - Джоуль. Кинетическая энергия есть разность между полной энергией системы и её энергией покоя. Часто выделяют кинетическую энергию поступательного и вращательного движения.

Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

где: - масса тела, - скорость центра масс тела, - момент инерции тела, - угловая скорость тела.

Теорема Кёнига.

Теорема Кёнига позволяет выразить полную кинетическую энергию системы через энергию движения центра масс и энергию движения относительно центра масс.

Кинетическая энергия системы есть энергия движения центра масс плюс энергия движения относительно центра масс:

,

где - полная кинетическая энергия, - энергия движения центра масс, - относительная кинетическая энергия.

Иными словами, полная кинетическая энергия тела или системы тел в сложном движении равна сумме энергии системы в поступательном движении и энергии системы во вращательном движении относительно центра масс.

Теорема Штейнера-Гюйгенса.

Теорема Гюйгенса-Штейнера: момент инерции тела относительно произвольной оси равен сумме момента инерции этого тела относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

Где - известный момент инерции относительно оси, проходящей через центр масс тела, - искомый момент инерции относительно параллельной оси, - масса тела, - расстояние между указанными осями.


5) Система двух частиц. Приведённая масса. Центральное поле. Законы Кеплера.

Приведённая масса.

Приведённая масса - условная характеристика распределения масс в движущейся механической системе, зависящая от физических параметров системы (масс, моментов инерции, и др.) и от её закона движения.

Обычно приведенная масса определяется из равенства , где - кинетическая энергия системы, а - скорость той точки системы, к которой приводится масса. В более общем виде приведённая масса является коэффициентом инерции в выражении кинетической энергии системы со стационарными связями, положение которой определяется обобщёнными координатами

где точка означает дифференцирование по времени, а есть функции обобщённых координат.

Система двух частиц.

Задача двух тел состоит в том, чтобы определить движение двух точечных частиц, которые взаимодействуют только друг с другом. Распространённые примеры включают спутник, обращающийся вокруг планеты, планета, обращающаяся вокруг звезды.

Задачу двух тел можно представить как две независимых задачи одного тела, которые привлекают решение для движения одной частицы во внешнем потенциале. Так как многие задачи с одним телом могут быть решены точно, соответствующая задача с двумя телами также может быть решена. В отличие от этого, задача с тремя телами (и, более широко, задача n тел) не может быть решена, кроме специальных случаев.

В задаче двух тел, возникающей, например, в небесной механике или теории рассеяния, приведённая масса появляется как некая эффективная масса, когда задачу двух тел сводят к двум задачам об одном теле. Рассмотрим два тела: одно с массой и другое с массой . В эквивалентной проблеме одного тела рассматривают движение тела с приведённой массой, равной

где сила, действующая на эту массу, дается силой, действующей между этими двумя телами. Видно, что приведённая масса равна половине среднего гармонического двух масс.

Центральное поле.

Сведя задачу о движении двух тел к задаче о движении одного тела, мы пришли к вопросу об определении движения частицы во внешнем поле, в котором ее потенциальная энергия зависит только от расстояния до определенной неподвижной точки; такое поле называют центральным. Сила

действующая на частицу, по абсолютной величине зависит при этом тоже только от и направлена в каждой точке вдоль радиус-вектора.

При движении в центральном поле сохраняется момент системы относительно центра поля. Для одной частицы это есть

Законы Кеплера.

Законы Кеплера - три эмпирических соотношения. Описывают идеализированную гелиоцентрическую орбиту планеты. В рамках классической механики выводятся из решения задачи двух тел предельным переходом / → 0, где , - массы планеты и Солнца.

1. Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

2. Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.

3. Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников.


6) Функция Лагранжа. Уравнения Лагранжа. Обобщённые импульсы, энергия. Циклические координаты. Фукнция Гамильтона и уравнения Гамильтона.

Функция Лагранжа.


7) Гармонические колебания. Амплитуда. Частота. Пружинный маятник, математический маятник, физический маятник.

Гармонические колебания.

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

где х - значение изменяющейся величины, t - время, остальные параметры - постоянные: А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

§ Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).

§ Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Амплитуда.

Амплитуда - максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении. Неотрицательная скалярная величина, размерность которой совпадает с размерностью определяемой физической величины.

Иначе: Амплитуда - модуль максимального отклонения тела от положения равновесия. Например:

§ амплитуда для механического колебания тела (вибрация), для волн на струне или пружине - это расстояние и записывается в единицах длины.

Частота.

Частота - физическая величина, характеристика периодического процесса, равная числу полных циклов процесса, совершённых за единицу времени. Стандартные обозначения в формулах - , , или . Единицей частоты в СИ в общем случае является Гц. Величина, обратная частоте, называется периодом.

В природе известны периодические процессы с частотами от ~10 −16 Гц (частота обращения Солнца вокруг центра Галактики) до ~10 35 Гц (частота колебаний поля, характерная для наиболее высокоэнергичных космических лучей).

Пружинный маятник.

Пружинный маятник - механическая система, состоящая из пружины с коэффициентом упругости (жёсткостью) k (закон Гука), один конец которой жёстко закреплён, а на втором находится груз массы m.

Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения. Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене.

Математический маятник.

Математический маятник - осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины L неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит от амплитуды и массы маятника.

Плоский математический маятник со стержнем - система с одной степенью свободы. Если же стержень заменить на растяжимую нить, то это система с двумя степенями свободы со связью. Пример школьной задачи, в которой важен переход от одной к двум степеням свободы.

При малых колебаниях физический маятник колеблется так же, как математический с приведённой длиной.

Физический маятник.

Физический маятник - осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

8) Колебания с трением. Диссипативная функция.

В реальных системах всегда происходит диссипация энергии. Если потери энергии не будут компенсироваться за счет внешних устройств, то колебания с течением времени будут затухать и через какое-то время прекратятся вообще. Рассмотрим колебания пружинного маятника в вязкой среде.

Для тела, движущегося в однородной вязкой среде, сила трения зависит только от скорости. При малых скоростях можно считать, что сила трения

, где бета – положительный постоянный коэффициент.

К энергии

Выводы.

· Характер собственных колебаний при наличии силы трения определяется соотношением между и . При – апериодический режим (3); – колебания описываются периодическим законом c экспоненциально убывающей от времени амплитудой (4); – режим критического затухания (5).

· Добротность колебательной системы является очень важным параметром, характеризующим диссипационные процессы в системе.

Диссипативная функция (функция рассеяния) - функция, вводимая для учёта перехода энергии упорядоченного движения в энергию неупорядоченного движения, в конечном счёте - в тепловую, например, для учёта влияния сил вязкого трения на движение механической системы. Диссипативная функция характеризует степень убывания механической энергии этой системы. Диссипативная функция, делённая на абсолютную температуру, определяет скорость, с которой возрастает энтропия в системе (т. н. производство энтропии). Диссипативная функция имеет размерность мощности.


9) Вынужденные колебания без трения. Биения. Резонанс.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку. Классическая механика рассматривает закон сохранения механической энергии.

Полная механическая энергия замкнутой системы физических тел, между которыми действуют консервативные силы, является величиной постоянной. Так формулируется закон сохранения энергии в механике Ньютона.

Замкнутой, или изолированной, принято считать физическую систему, на которую не действуют внешние силы. В ней не происходит обмена энергией с окружающим пространством, и собственная энергия, которой она обладает, остаётся неизменной, то есть сохраняется. В такой системе действуют только внутренние силы, и тела взаимодействуют друг с другом. В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот.

Простейший пример замкнутой системы – снайперская винтовка и пуля.

Виды механических сил


Силы, которые действуют внутри механической системы, принято разделять на консервативные и неконсервативные.

Консервативными считаются силы, работа которых не зависит от траектории движения тела, к которому они приложены, а определяется только начальным и конечным положением этого тела. Консервативные силы называют также потенциальными . Работа таких сил по замкнутому контуру равна нулю. Примеры консервативных сил – сила тяжести, сила упругости .

Все остальные силы называются неконсервативными . К ним относятся сила трения и сила сопротивления . Их называют также диссипативными силами. Эти силы при любых движениях в замкнутой механической системе совершают отрицательную работу, и при их действии полная механическая энергия системы убывает (диссипирует). Она переходит в другие, не механические виды энергии, например, в теплоту. Поэтому закон сохранения энергии в замкнутой механической системе может выполняться, только если неконсервативные силы в ней отсутствуют.

Полная энергия механической системы состоит из кинетической и потенциальной энергии и является их суммой. Эти виды энергий могут превращаться друг в друга.

Потенциальная энергия

Потенциальную энергию называют энергией взаимодействия физических тел или их частей между собой. Она определяется их взаимным расположением, то есть, расстоянием между ними, и равна работе, которую нужно совершить, чтобы переместить тело из точки отсчёта в другую точку в поле действия консервативных сил.

Потенциальную энергию имеет любое неподвижное физическое тело, поднятое на какую-то высоту, так как на него действует сила тяжести, являющаяся консервативной силой. Такой энергией обладает вода на краю водопада, санки на вершине горы.

Откуда же эта энергия появилась? Пока физическое тело поднимали на высоту, совершили работу и затратили энергию. Вот эта энергия и запаслась в поднятом теле. И теперь эта энергия готова для совершения работы.

Величина потенциальной энергии тела определяется высотой, на которой находится тело относительно какого-то начального уровня. За точку отсчёту мы можем принять любую выбранную нами точку.

Если рассматривать положение тела относительно Земли, то потенциальная энергия тела на поверхности Земли равна нулю. А на высоте h она вычисляется по формуле:

Е п = m ɡ h ,

где m – масса тела

ɡ - ускорение свободного падения

h – высота центра масс тела относительно Земли

ɡ = 9,8 м/с 2

При падении тела c высоты h 1 до высоты h 2 сила тяжести совершает работу. Эта работа равна изменению потенциальной энергии и имеет отрицательное значение, так как величина потенциальной энергии при падении тела уменьшается.

A = - ( E п2 – E п1) = - ∆ E п ,

где E п1 – потенциальная энергия тела на высоте h 1 ,

E п2 - потенциальная энергия тела на высоте h 2 .

Если же тело поднимают на какую-то высоту, то совершают работу против сил тяжести. В этом случае она имеет положительное значение. А величина потенциальной энергии тела увеличивается.

Потенциальной энергией обладает и упруго деформированное тело (сжатая или растянутая пружина). Её величина зависит от жёсткости пружины и от того, на какую длину её сжали или растянули, и определяется по формуле:

Е п = k·(∆x) 2 /2 ,

где k – коэффициент жёсткости,

∆x – удлинение или сжатие тела.

Потенциальная энергии пружины может совершать работу.

Кинетическая энергия

В переводе с греческого «кинема» означает «движение». Энергия, которой физическое тело получает вследствие своего движения, называется кинетической. Её величина зависит от скорости движения.

Катящийся по полю футбольный мяч, скатившиеся с горы и продолжающие двигаться санки, выпущенная из лука стрела – все они обладают кинетической энергией.

Если тело находится в состоянии покоя, его кинетическая энергия равна нулю. Как только на тело подействует сила или несколько сил, оно начнёт двигаться. А раз тело движется, то действующая на него сила совершает работу. Работа силы, под воздействием которой тело из состояния покоя перейдёт в движение и изменит свою скорость от нуля до ν , называется кинетической энергией тела массой m .

Если же в начальный момент времени тело уже находилось в движении, и его скорость имела значение ν 1 , а в конечный момент она равнялась ν 2 , то работа, совершённая силой или силами, действующими на тело, будет равна приращению кинетической энергии тела.

E k = E k 2 - E k 1

Если направление силы совпадает с направлением движения, то совершается положительная работа, и кинетическая энергия тела возрастает. А если сила направлена в сторону, противоположную направлению движения, то совершается отрицательная работа, и тело отдаёт кинетическую энергию.

Закон сохранения механической энергии

Е k 1 + Е п1 = Е k 2 + Е п2

Любое физическое тело, находящееся на какой-то высоте, имеет потенциальную энергию. Но при падении оно эту энергию начинает терять. Куда же она девается? Оказывается, она никуда не исчезает, а превращается в кинетическую энергию этого же тела.

Предположим, на какой-то высоте неподвижно закреплён груз. Его потенциальная энергия в этой точке равна максимальному значению. Если мы отпустим его, он начнёт падать с определённой скоростью. Следовательно, начнёт приобретать кинетическую энергию. Но одновременно начнёт уменьшаться его потенциальная энергия. В точке падения кинетическая энергия тела достигнет максимума, а потенциальная уменьшится до нуля.

Потенциальная энергия мяча, брошенного с высоты, уменьшается, а кинетическая энергия возрастает. Санки, находящиеся в состоянии покоя на вершине горы, обладают потенциальной энергией. Их кинетическая энергия в этот момент равна нулю. Но когда они начнут катиться вниз, кинетическая энергия будет увеличиваться, а потенциальная уменьшаться на такую же величину. А сумма их значений останется неизменной. Потенциальная энергия яблока, висящего на дереве, при падении превращается в его кинетическую энергию.

Эти примеры наглядно подтверждают закон сохранения энергии, который говорит о том, что полная энергия механической системы является величиной постоянной . Величина полной энергии системы не меняется, а потенциальная энергия переходит в кинетическую и наоборот.

На какую величину уменьшится потенциальная энергия, на такую же увеличится кинетическая. Их сумма не изменится.

Для замкнутой системы физических тел справедливо равенство
E k1 + E п1 = E k2 + E п2 ,
где E k1 , E п1 - кинетическая и потенциальная энергии системы до какого-либо взаимодействия, E k2 , E п2 - соответствующие энергии после него.

Процесс преобразования кинетической энергии в потенциальную и наоборот можно увидеть, наблюдая за раскачивающимся маятником.

Нажать на картинку

Находясь в крайне правом положении, маятник словно замирает. В этот момент его высота над точкой отсчёта максимальна. Следовательно, максимальна и потенциальная энергия. А кинетическая равна нулю, так как он не движется. Но в следующее мгновение маятник начинает движение вниз. Возрастает его скорость, а, значит, увеличивается кинетическая энергия. Но уменьшается высота, уменьшается и потенциальная энергия. В нижней точке она станет равной нулю, а кинетическая энергия достигнет максимального значения. Маятник пролетит эту точку и начнёт подниматься вверх налево. Начнёт увеличиваться его потенциальная энергия, а кинетическая будет уменьшаться. И т.д.

Для демонстрации превращений энергии Исаак Ньютон придумал механическую систему, которую называют колыбелью Ньютона или шарами Ньютона .

Нажать на картинку

Если отклонить в сторону, а затем отпустить первый шар, то его энергия и импульс передадутся последнему через три промежуточных шара, которые останутся неподвижными. А последний шар отклонится с такой же скоростью и поднимется на такую же высоту, что и первый. Затем последний шар передаст свою энергию и импульс через промежуточные шары первому и т. д.

Шар, отведенный в сторону, обладает максимальной потенциальной энергией. Его кинетическая энергия в этот момент нулевая. Начав движение, он теряет потенциальную энергию и приобретает кинетическую, которая в момент столкновения со вторым шаром достигает максимума, а потенциальная становится равной нулю. Далее кинетическая энергия передаётся второму, затем третьему, четвёртому и пятому шарам. Последний, получив кинетическую энергию, начинает двигаться и поднимается на такую же высоту, на которой находился первый шар в начале движения. Его кинетическая энергия в этот момент равна нулю, а потенциальная равна максимальному значению. Далее он начинает падать и точно так же передаёт энергию шарам в обратной последовательности.

Так продолжается довольно долго и могло бы продолжаться до бесконечности, если бы не существовало неконсервативных сил. Но в реальности в системе действуют диссипативные силы, под действием которых шары теряют свою энергию. Постепенно уменьшается их скорость и амплитуда. И, в конце концов, они останавливаются. Это подтверждает, что закон сохранения энергии выполняется только в отсутствии неконсервативных сил.

1.7. ЗАКОН СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ

Формулировка закона сохранения механической энергии. Формулировка в случае наличия диссипативных сил. Графическое представление энергии. Финитное и инфинитное движения. Абсолютно упругий удар. Абсолютно неупругий удар.

Полная механическая энергия системы - энергия механического движения и взаимодействия, т.е. равна сумме кинетической и потенциальной энергий. Закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы полная механическая энергия сохраняется, т.е. не изменяется со временем. Это -фундаментальный закон природы. Он является следствием однородности времени - инвариантности физических законов относительно выбора начала отсчета времени. Все силы в механике принято разделять на консервативные и неконсервативные . Консервативными называются силы, работа которых не зависит от формы траектории (пути) между двумя точками, а зависит только от начального и конечного положений тела относительно другого. Иначе говоря, работа консервативных сил по замкнутой траектории равна нулю. Примером консервативных сил являются сила тяжести, сила упругости и т.д. К ним, прежде всего, относятся диссипативные силы (преобразующие механическую энергию в другие виды энергии), например, сила трения. Если есть изменение, то равна работе диссипативных сил. Финитное – движение точек в ограниченной области пространства. Инфинитное – тело уходит на бесконечность. Абсолютно упругий удар - столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию. законы сохранения импульса и сохранения механической энергии выполняются . Абсолютно неупругий удар - столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое тело. Не выполняется закон сохранения механической энергии: вследствие деформации часть кинетической энергии переходит во внутреннюю энергию тел (разогрев).

Введем понятие полной механической энергии частицы. Приращение кинетической энергии частицы равно элементарной работе результирующей всех сил, действующих на частицу. Если частица находится в потенциальном поле, то на нее действует консервативная сила со стороны этого потенциального поля. Кроме того, на частицу могут действовать и другие силы, имеющие иное происхождение. Назовем их сторонними силами .

Таким образом, результирующая всех сил, действующих на частицу, может быть представлена в виде . Работа всех этих сил идет на приращение кинетической энергии частицы:

Согласно (6.7), работа сил поля равна убыли потенциальной энергии частицы, т. е. . Подставив это выражение в предыдущее и перенеся член влево, получим

Отсюда видно, что работа сторонних сил идет на приращениe величины . Эту величину - сумму кинетичеcкой и потенциальной энергии - называют полной механической энергией частицы в поле :

на конечном перемещении из точки 1 в точку 2

(7 .3)

т.е . приращение полной механической энергии частицы на некотором пути равно алгебраической сумме работ всех сторонних сил , действующих на частицу на том же пути. Если , то полная механическая энергия частицы увеличивается, если же , то уменьшается.

Полная механическая энергия частицы может измениться под действием только сторонних сил. Отсюда непосредственно вытекает закон сохранения полной механической энергии частицы во внешнем поле: если сторонние силы отсутствуют или таковы, что алгебраическая сумма их мощностей равна нулю в течение интересующего нас времени, то полная механическая энергия частицы остается постоянной за это время . Иначе говоря,

(7 .4)

Уже в такой простейшей форме данный закон сохранения позволяет достаточно легко получать ответы на ряд важных вопросов без привлечения уравнений движения, что, как мы знаем, часто сопряжено с проведением громоздких и утомительных расчетов. Именно это обстоятельство и превращает законы сохранения в весьма действенный инструмент исследования.

Проиллюстрируем возможности и преимущества, которые дает применение закона сохранения (7.4), на следующем примере.

Пример. Пусть частица движется в одномерном потенциальном поле U (х. Если сторонние силы отсутствуют, то полная механическая энергия частицы в данном поле, т. е. Е, не меняется в процессе движения, и мы можем просто решить, например, такие вопросы, как:

1. Определить, не решая основного уравнения динамики, v (х) - скорость частицы в зависимости от ее координаты. Для этого достаточно знать, согласно уравнению (7.4) , конкретный вид потенциальной кривой U (х) и значение полной энергии Е (правая часть данного уравнения).

2. Установить область изменения координаты х частицы, в которой она может находиться при заданном значении полной энергии Е. Ясно, что в область, где U > Е, частица попасть не может, поскольку потенциальная энергия U частицы не может превышать ее полную энергию. Отсюда сразу следует, что при (рис. 7.1) частица может двигаться в области

между координатами (совершает колебания) или правее координаты . Перейти же из первой области во вторую (или обратно) частица не может: этому препятствует потенциальный барьер, разделяющий обе эти области. Заметим, что когда частица движется в ограниченной области поля, говорят, что она находится в потенциальной яме, в нашем случае - между .

Иначе ведет себя частица при (рис. 7.1): для нее доступна вся область правее . Если в начальный момент частица находилась в точке , то в дальнейшем она будет двигаться вправо. Определение изменения кинетической энергия частицы в зависимости от ее положения х может послужить полезным самостоятельным упражнением.

До сих пор мы ограничивались рассмотрением поведения одной частицы с энергетической точки зрения. Теперь перейдем к системе частиц. Это может быть любое тело, газ, любой механизм, Солнечная система и т. д.

В общем случае частицы системы могут взаимодействовать как между собой, так и с телами, не входящими в данную систему. Систему частиц, на которую не действуют никакие посторонние тела или их воздействие пренебрежимо мало, называют замкнутой или изолированной. Понятие замкнутой системы является естественным обобщением понятия изолированной материальной точки и играет важную роль в физике.

Введем понятие потенциальной энергии системы частиц. Рассмотрим замкнутую систему, между частицами которой действуют только центральные силы, т. е. силы, зависящие при данном характере взаимодействия только от расстояния между ними и направленные по прямой, их соединяющей.

Покажем, что в любой системе отсчета работа всех этих сил при переходе системы частиц из одного положения в другое может быть представлена как убыль некоторой функции, зависящей при данном характере взаимодействия только от конфигурации самой системы или от относительного расположения ее частиц. Эту функцию назовем собственной потенциальной энергией системы, в отличие от внешней потенциальной энергии, характеризующей взаимодействие данной системы с другими телами.

Первоначально рассмотрим систему из двух частиц. Вычислим элементарную работу сил, с которыми эти частицы взаимодействуют между собой. Пусть в произвольной системе отсчета в некоторый момент времени положение частиц определяется радиус-векторами и . Если за время dt частицы совершили перемещения и соответственно, то работа сил взаимодействия и равна

Теперь учтем, что, согласно третьему закону Ньютона , поэтому предыдущее выражение можно переписать так:

Введем вектор , характеризующий положение 1-й частицы относительно 2-й. Тогда и после подстановки в выражение для работы получим

.

Сила - центральная, поэтому работа этой силы равна убыли потенциальной энергии взаимодействия данной пары частиц, т. е.

Так как функция зависит только от расстояния между частицами, то ясно, что работа не зависит от выбора системы отсчета.

Теперь рассмотрим систему из трех частиц, так как полученный в этом случае результат легко обобщить и на систему из произвольного числа частиц. Элементарная работа, которую совершают все силы взаимодействия при элементарном перемещении всех частиц, может быть представлена как сумма элементарных работ всех трех пар взаимодействий, т. е.

Но для каждой пары взаимодействий, как было показано , поэтому

где функция есть собственная потенциальная энергия данной системы частиц:

Так как каждое слагаемое этой суммы зависит от расстояния между соответствующими частицами, то очевидно, что собственная потенциальная энергия U данной системы зависит от относительного расположения частиц в один и тот же момент времени, или, другими словами, от конфигурации системы.

Подобные рассуждения справедливы и для системы из любого числа частиц. Поэтому можно утверждать, что каждой конфигурации произвольной системы частиц присуща своя собственная потенциальная энергия U , и работа всех центральных внутренних сил при изменении конфигурации системы равна убыли собственной потенциальной энергии системы, т. е.

(7 .5)

а при конечном перемещении всех частиц системы

(7 .6)

где и -значения потенциальной энергии системы в начальном и конечном состояниях.

Собственная потенциальная энергия системы U - величина неаддитивная, т. е. она не равна в общем случае сумме собственных потенциальных энергий ее частей. Необходимо учесть еще потенциальную энергию взаимодействия отдельных частей системы

,

(7 .7)

где - собственная потенциальная энергия части системы.

Следует также иметь в виду, что собственная потенциальная энергия системы, как и потенциальная энергия взаимодействия каждой пары частиц, определяется с точностью до прибавления произвольной постоянной, которая, впрочем, и здесь совершенно несущественна.

В заключение приведем полезные формулы для расчета собственной потенциальной энергии системы. Прежде всего покажем, что эта энергия может быть представлена как.

(7 .8)

где - потенциальная энергия взаимодействия частицы со всеми остальными частицами системы. Здесь сумма берется по всем частицам системы. Убедимся в справедливости этой формулы сначала для системы из трех частиц. Выше было показано, что собственная потенциальная энергия данной системы Преобразуем эту сумму следующим образом. Представим каждое слагаемое в симметричном виде: , ибо ясно, что . Тогда

Сгруппируем члены с одинаковым первым индексом:

Каждая сумма в круглых скобках представляет собой потенциальную энергию взаимодействия частицы с остальными двумя. Поэтому последнее выражение можно переписать так:

что полностью соответствует формуле (7.8).

Обобщение полученного результата на произвольную систему очевидно, ибо ясно, что подобные рассуждения совершенно не зависят от числа частиц, составляющих систему.

Для системы, взаимодействие между частицами которой носит гравитационный или кулоновский характер, формулу (7.8) можно преобразовать и к другому виду, воспользовавшись понятием потенциала. Заменим в (7.8) потенциальную энергию частицы выражением , где - масса (заряд) частицы, а - потенциал, создаваемый всеми остальными частицами системы в точке нахождения частицы.

где -объемная плотность массы или заряда, -элемент объема. Здесь интегрирование проводится по всему объему, занимаемому массами или зарядами.

Проведем классификацию сил по их свойствам. Известно, что частицы рассматриваемой системы могут взаимодействовать как между собой, так и с телами, не входящими в данную систему. В соответствии с этим силы взаимодействия между частицами системы называют внутренними , а силы, обусловленные действием других тел, не входящих в данную систему, - внешними. В неинерциальной системе отсчета к последним нужно относить и силы инерции.

Кроме того, все силы делят на потенциальные и непотенциальные . Потенциальными называют силы, зависящие при данном характере взаимодействия только от конфигурации механической системы. Работа этих сил, как было показано, равна убыли потенциальной энергии системы. К непотенциальным силам относятся так называемые диссипативные силы - это силы трения и сопротивления, а также энергетические силы, вызывающие увеличение механической энергии системы за счет других видов энергии (например, взрыв артиллерийского снаряда). Важной особенностью данных сил является то, что суммарная работа внутренних диссипативных сил рассматриваемой системы отрицательна, а энергетических сил - положительна, причем в любой системе отсчета. Докажем это для диссипативных сил.

Любая диссипативная сила может быть представлена в виде

(7 . 1 4)

где - скорость данного тела относительно другого тела (или среды), с которым оно взаимодействует; - положительный коэффициент, зависящий в общем случае от скорости . Сила всегда направлена противоположно вектору . В зависимости от выбора системы отсчета работа этой силы может быть как положительной, так и отрицательной. Суммарная же работа всех внутренних диссипативных сил - величина всегда отрицательная . Переходя к доказательству этого, отметим прежде всего, что внутренние диссипативные силы в данной системе будут встречаться попарно, причем в каждой паре, согласно третьему закону Ньютона, они одинаковы по модулю и противоположны по направлению. Найдем элементарную работу произвольной пары диссипативных сил взаимодействия между телами 1 и 2 в системе отсчета, где скорости этих тел в данный момент равны :

Теперь учтем, что - скорость тела 1 относительно тела 2 , а также то, что . Тогда выражение для работы преобразуется так:

Отсюда видно, что работа произвольной пары внутренних диссипативных сил взаимодействия всегда отрицательна, а значит и суммарная работа всех пар внутренних диссипативных сил также всегда отрицательна. Таким образом, действительно,

(7 . 1 5)

Теперь можно сформулировать закон сохранения полной механической энергии системы частиц. Выше было показано, что приращение кинетической энергии системы равно работе, которую совершают все силы, действующие на все частицы системы. Разделив эти силы на внешние и внутренние, а внутренние, в свою очередь,- на потенциальные и непотенциальные, запишем предыдущее утверждение так:

Теперь учтем, что работа внутренних потенциальных сил равна убыли собственной потенциальной энергии системы, т.е.

Тогда предыдущее выражение примет вид

Очевидно, энергия Е зависит от скоростей частицы системы, характера взаимодействия между ними и конфигурации системы. Кроме того, энергия Е, как и потенциальная энергия U , определяется с точностью до прибавления несущественной произвольной постоянной и является величиной неаддитивной , т. е. энергия Е системы не равна в общем случае сумме энергий ее отдельных частей. В соответствии c (7.7)

(7 . 1 8)

где - механическая энергия части системы, - потенциальная энергия взаимодействия ее отдельных частей.

Вернемся к формуле (7.16). Перепишем ее с учетом (7.17) в виде

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах . Он является следствием законов Ньютона. Сумму E = E k + E p называютполной механической энергией . Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

Пример применения закона сохранения энергии – нахождение минимальной прочности легкой нерастяжимой нити, удерживающей тело массой m при его вращении в вертикальной плоскости (задача Х. Гюйгенса). Рис. 1.1.16 поясняет решение этой задачи.

Закон сохранения энергии для тела в верхней и нижней точках траектории записывается в виде:

Из этих соотношений следует:

Отсюда следует, что при минимальной скорости тела в верхней точке натяжение нити в нижней точке будет по модулю равно

Прочность нити должна, очевидно, превышать это значение.

Очень важно отметить, что закон сохранения механической энергии позволил получить связь между координатами и скоростями тела в двух разных точках траектории без анализа закона движения тела во всех промежуточных точках. Применение закона сохранения механической энергии может в значительной степени упростить решение многих задач.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.

Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии .

Одним из следствий закона сохранения и превращения энергии является утверждение о невозможности создания «вечного двигателя» (perpetuum mobile) – машины, которая могла бы неопределенно долго совершать работу, не расходуя при этом энергии (рис. 1.1.17).

История хранит немалое число проектов «вечного двигателя». В некоторых из них ошибки «изобретателя» очевидны, в других эти ошибки замаскированы сложной конструкцией прибора, и бывает очень непросто понять, почему эта машина не будет работать. Бесплодные попытки создания «вечного двигателя» продолжаются и в наше время. Все эти попытки обречены на неудачу, так как закон сохранения и превращения энергии «запрещает» получение работы без затраты энергии.

МЕТОДИКА И ПОРЯДОК ИЗМЕРЕНИЙ :

Внимательно рассмотрите окно опыта. Найдите все регуляторы и другие основные элементы. Зарисуйте в свой конспект схему опыта.

После нажатия мышью кнопки «Выбор» установите с помощью движков регуляторов значения массы тела m , угла наклона плоскости, внешней силыF вн , коэффициента тренияи ускоренияа , указанных в табл.1 для вашей бригады.

Потренируйтесь в синхронном включении секундомера и снятия метки «тело закреплено» одиночным щелчком курсора мыши на кнопке в правом нижнем углу окна опыта

Одновременно включите секундомер и снимите метку «тело закреплено». Выключите секундомер в момент остановки тела в конце наклонной плоскости.

Проделайте этот опыт 10 раз и результаты измерения времени соскальзывания тела с наклонной плоскости запишите в табл. 2.

ТАБЛИЦА 1. Исходные параметры опыта

бриг.

m , кг

,град

F вн, Н

а,м/с 2

ТАБЛИЦА 2. Результаты измерений и расчётов

изм.

Сред.

знач.

t , с

v , м/с

S, м

W к , Дж

W п , Дж

A тр, Дж

A вн , Дж

W полн , Дж

ОБРАБОТКА РЕЗУЛЬТАТОВ И ОФОРМЛЕНИЕ ОТЧЁТА:

Вычислите по формулам:

а) - скорость тела в конце наклонной плоскости;

б)
- длину наклонной плоскости;

в)
- кинетическую энергию тела, в конце наклонной плоскости;

г)

- потенциальную энергию тела в верхней точке наклонной плоскости;

д) - работу силы трения на участке спуска;

е)
- работу внешней силы на участке спуска(определите знак работы исходя из условий эксперимента)

и запишите эти значения в соответствующие строки табл. 2.

Вычислите средние значения этих параметров и запишите их в столбец «средние значения» табл.2.

По формуле Е мех1 = Е мех2 проверьте выполнение закона сохранения механической энергии при движении тела по наклонной плоскости, рассчитайте погрешности и сделайте выводы по результатам проведённых опытов.

Вопросы и задания для самоконтроля

    В чём заключается закон сохранения механической энергии?

    Для каких систем выполняется закон сохранения механической энергии?

    В чём состоит различие между понятиями энергии и работы?

    Чем обусловлено изменение потенциальной энергии?

    Чем обусловлено изменение кинетической энергии?

    Необходимо ли выполнение условия замкнутости механической системы тел для выполнения закона сохранения механической энергии?

    Какие силы называются консервативными?

    Какие силы называются диссипативными?

    Тело медленно втаскивают в гору. Зависят ли от формы профиля горы: а) работа силы тяжести; б) работа силы трения? Начальная и конечная точки перемещения тела фиксированы.

    Тело соскальзывает с вершины наклонной плоскости без начальной скорости. Зависит ли работа силы трения на всём пути движения тела до остановки на горизонтальном участке: а) от угла наклона плоскости; б) от коэффициента трения?

    По наклонной плоскости с одной и той же высоты соскальзывают два тела: одно массой m, другое массой 2m. Какое из тел пройдёт до остановки по горизонтальному участку путь больший и во сколько раз? Коэффициенты трения для обоих тел одинаковы.

    Санки массой mскатились с горы высотой Н и остановились на горизонтальном участке. Какую работу необходимо совершить для того, чтобы поднять их на гору по линии скатывания.

    С одинаковой начальной скоростью тело проходит: а) впадину; б) горку, имеющие одинаковые дуги траекторий и одинаковые коэффициенты трения. Сравните скорости тела в конце пути в обоих случаях.

ЛАБОРАТОРНАЯ РАБОТА № 1_2

Поделиться: