Солнечная энергия. Перспективы развития солнечной энергетики

О солнечной энергетике и перспективах ее развития ведутся споры и дискуссии уже много лет. Большинство считают солнечную энергетику – энергетикой будущего, надеждой всего человечества. Серьезные инвестиции вкладывает в строительство солнечных электростанций большое количество компаний. Солнечную энергетику стремятся развивать во многих странах мирах, считая ее главной альтернативой традиционным энергоносителям. Германия, являясь далеко не солнечной страной, стала мировым лидеров в этой сфере. Совокупная мощность СЭС Германии растет год от года. Серьезно занимаются разработками в области энергии солнца и в Китае. Согласно оптимистичному прогнозу International Energy Agency, солнечные электростанции к 2050 году смогут производить до 20-25% мировой электроэнергии.
Альтернативный взгляд на перспективы солнечных электростанций базируется на том, что затраты, которые требуются для изготовления солнечных батарей и аккумуляторных систем, в разы превышают прибыль от производимой солнечными электростанциями электроэнергии. Противники этой позиции уверяют, что все как раз наоборот. Современные солнечные батареи способны работать без новых капиталовложений десятки и даже сотни лет, произведенная ими суммарная энергия равна бесконечности. Вот почему в долгосрочной перспективе электроэнергия, полученная с использованием энергии солнца, станет не просто рентабельной, а сверхприбыльной.
Где же истина? Попробуем разобраться в этом вместе с вами, уважаемые читатели. Мы рассмотрим современные подходы в сфере солнечной энергетики и некоторые гениальнейшие идеи, которые на сегодняшний день уже реализованы. Мы попробуем установить КПД солнечных батарей, функционирующих в настоящее время, понять, почему сегодня этот КПД является довольно низким.

Эффективность солнечных батарей в России
Согласно современным исследованиям, солнечная энергия составляет порядка 1367 Ватт на 1 кв.м (солнечная постоянная). На экваторе через атмосферу до земли доходит лишь 1020 Ватт. На территории России с помощью солнечных электростанций (при условии, что КПД солнечных элементов составляет сегодня 16%) в среднем можно получить 163,2 Ватта на квадратный метр.
В с учетом погодных условий, длительности дня и ночи, а также, типа установки солнечных батарей (КПД солнечной батареи не учитывается).
Если в Москве установить квадратный километр солнечных батарей под углом в 40 градусов (что для Москвы оптимально), то годовой объем выработанной электроэнергии составит 1173*0.16 = 187.6 ГВт*ч. При цене на электроэнергию в 3 рубля за кВт/ч, условная стоимость сгенерированной электроэнергии – 561 млн. рублей.

Наиболее распространенные способы генерации электроэнергии с помощью солнца:

Солнечные тепло-электространции
Громадные зеркала таких солнечных электростанций, поворачиваясь, ловят солнце и отражают его на коллектор. Принцип функционирования таких электрогенерирующих станций основан на преобразовании тепловой энергии солнца в механическую электроэнергию термодинамической машины либо с помощью газопоршневого двигателя Стирлинга, либо с помощью нагрева воды и т.п.

В качестве примера рассмотрим электростанцию Ivanpah (мощность 392 мегаватт), в которую вложил свои средства всемогущий Google. В строительство солнечной электростанции, расположенной в калифорнийской пустыне Мохаве, вложено более двух миллиардов долларов США. На 1 кВт установленной мощности СЭС затрачено 5612 долларов. Многие полагают, что эти затраты, хотя и превышают затраты на сооружение угольных электростанций, гораздо ниже, чем затраты на строительство АЭС. Но так ли это? Во первых, на атомной электростанции, на 1 кВт ее установленной мощности расходуется от 2000 до 4000 долларов, что дешевле, чем затраты, которые пошли на строительство Ivanpah. Во вторых, годовая выработка электроэнергии солнечной электростанции – 1079 ГВт*ч, следовательно, ее среднегодовая мощность 123.1МВт. К тому же, солнечная электростанция станция способна генерировать энергию солнца только в дневные часы. Таким образом, «усредненная» стоимость строительства СЭС доходит до 17870 долларов за 1 кВт, а это довольно значительная цена. Пожалуй, дороже обошлась бы разве что выработка электричества в открытом космосе. Затраты на строительство привычных электростанций, работающих, например, на газе, в 20-40 раз ниже. При этом, в отличие от солнечных электростанций, эти электростанции могут функционировать постоянно, производя электроэнергию тогда, когда в ней есть потребность, а не только в те часы, когда светит солнце.
Но мы знаем, что современные солнечные теплоэлектростанции способны генерировать электроэнергию круглосуточно, используя для этого большой объем нагреваемого в течение всего светового дня теплоносителя. Только стоимость строительства этих станций стараются не слишком афишировать, вероятно, потому, что она является значительной. А если в стоимость проектирования и строительства солнечных электростанций включить аккумуляторы, тем более, строительство гидроаккумулирующих электростанций, то сумма возрастет до фантастических размеров.

Кремниевые солнечные батареи
Сегодня для функционирования СЭС применяются полупроводниковые фотоэлементы, которые представляют собой полупроводниковые диоды большой площади. Влетающий в pn-переход световой квант, генерирует пару электрон-дырка, при этом, на выходах фотодиода создается перепад напряжения (порядка 0,5В).
КПД кремниевой солнечной батареи - порядка 16 %. Почему же КПД столь низок? Для того чтобы сформировать электронно-дырочную пару, требуется определенная энергия. Если прилетевший световой квант обладает малой энергией, то генерации пары не произойдет. В этом случае квант света просто пройдет сквозь кремний, как сквозь обыкновенное стекло. Вот почему кремний является прозрачным для инфракрасного света далее 1.2 мкм. Если же световой квант прилетит с большей энергией, чем требуется для генерации (зеленый свет), пара образуется, но избыток энергии просто уйдет в никуда. При синем и ультрафиолетовом свете (энергия которого является очень высокой), квант может не успеть долететь до самых глубин p-n перехода.


Для того чтобы солнечный свет не отражался от поверхности солнечной батареи, на нее наносится специальное противоотражающее покрытие (такое покрытие наносят и на линзы фотообъективов). Текстуру поверхности делают неровной (в виде гребенки). В этом случае световой поток, отразившись от поверхности один раз, возвращается вновь.
КПД фотоэлементов увеличивают, комбинируя между собой фотоэлементы, на основе различных полупроводников и с разной энергией, необходимой для генерации пары электрон-дырка. Для трехступенчатых кремниевых фотоэлементов достигается КПД в 44% и даже выше. Принцип работы трехступенчатого фотоэлемента основан на том, что сначала ставится фотоэлемент, который эффективно поглощает именно синий свет, а красный и зеленый, пропускает. Второй фотоэлемент поглощает зеленый, третий – ИК. Однако трехступенчатые фотоэлементы сегодня очень дороги, поэтому, повсеместно используются более дешевые одноступенчатые фотоэлементы, которые за счет цены опережают трехступенчатые по показателю Ватт/$.
Гигантскими темпами развивает производство кремниевых фотоэлементов Китай, за счет чего стоимость одного ватта снижается. В Китае она составляет примерно 0,5 долларов за Ватт.
Основными типами кремниевых фотоэлементов являются:
Монокристаллические
Поликристаллические
КПД монокристаллических фотоэлементов, которые являются более дорогими, несколько выше (всего лишь на 1 %), чем КПД поликристаллических. Поликристаллические кремниевые фотоэлементы сегодня обеспечивают наиболее дешевую стоимость 1 Ватта генерируемой электроэнергии.
Кремниевые солнечные батареи не могут служить вечно. За 20 лет эксплуатации в условиях агрессивной среды самые совершенные из них теряют до 15-ти процентов своей первоначальной мощности. Есть основания полагать, что в дальнейшем деградациях солнечных батарей замедляется.

Кремниевый фотоэлемент и параболическое зеркало
Изобретатели во всех странах мира предпринимают всевозможные попытки увеличить экономическую рентабельность солнечных электростанций. Если, например, взять маленький эффективный кремниевый фотоэлемент и параболическое зеркало (concentrated photovoltaics), можно достичь КПД в 40 % вместо 16, при этом, зеркало гораздо дешевле, чем солнечная батарея. Но для того чтобы следить за солнцем, требуется надежная механика. Громадная зеркальная поворотная тарелка должна быть надежно укреплена и защищена от мощных ветровых порывов и агрессивных факторов окружающей среды. Вторая проблема заключается в том, что параболические зеркала не могут фокусировать рассеянный свет. Если солнце зашло даже за не плотные тучи, выработка энергии с помощью параболической системы упадет до нуля. У привычных солнечных батарей в этих условиях выработка тепловой энергии тоже серьезно снижается, но не до нуля. Солнечные батареи с параболическими зеркалами слишком дороги по установочной стоимости и затратны в обслуживании.

Круглые солнечные элементы на крышах
Американской компанией Solyndra при поддержки правительства были сконструированы солнечные фотоэлементы круглой формы. Они монтировались на крышах, выкрашенных в белый цвет. Солнечные батареи круглой формы изготавливали путем напыления проводникового слоя (в случае с Solyndra использовался Copper indium gallium (di)selenide) на стеклянные трубы. Фактическая эффективность круглых батарей составляла порядка 8,5 %, что ниже более дешевых кремниевых. Solyndra, получившая государственные гарантии по громадному кредиту, обанкротилась. В технологии, экономическая эффективность от которых была весьма сомнительной с самого начала, американская экономика вложила немалые денежные средства. «Удачное» лоббирование неэффективных технологий – это не только российское ноу хау.

Большая проблема солнечной энергетики!
Известно, что солнечные электростанции генерируют электроэнергию днем, в то время, как огромная потребность в электричестве возникает как раз таки в вечерние часы. Это значит, что без аккумуляторов солнечные электростанции не будут эффективны. В вечерний пик потребления электричества придется задействовать альтернативные (классические) источники электроэнергии. В дневные часы часть традиционных электростанций придется отключить, а часть - держать в горячем резерве на случай плохой погоды. Если над солнечной электростанцией нависнут тучи, недостающую электроэнергию должна давать резервная. В итоге, классические генерирующие мощности стоят в резерве и теряют прибыль.


Есть еще один путь. Он отражен в проекте Desertec – передача электроэнергии из Африки в Европу. С помощью ЛЭП в вечерний пик потребления электричества можно передавать электроэнергию от СЭС, которые находятся в тех районах земного шара, где в это время в разгаре солнечный день. Но этот способ до перехода на сверхпроводники требует огромных финансовых затрат, а также, всевозможных согласований между разными государствами.

Использование аккумуляторов
Мы выяснили, что в среднем стоимость одного Ватта, произведенного солнечной батареей - 0,5 доллара. В течение дня (8 часов) батарея способна сгенерировать в пределах 8-ми Вт*ч. Эту энергию необходимо сохранить до вечернего пика потребления электричества.
Литиевые аккумуляторы, разработанные в Китае, стоят приблизительно 0,4 доллара за Вт*ч, следовательно, для солнечной батареи стоимостью 0,5 доллара, на 1 Вт будут необходимы аккумуляторы стоимостью 3,2 доллара, а это в шесть раз превышает стоимость самой батареи. Если учесть, что литиевый аккумулятор рассчитан максимум на 2000 циклов заряда-разряда, что составляет от трех до шести лет, то можно сделать вывод, - литиевый аккумулятор, это чрезвычайно дорогое решение.
Самыми дешевыми аккумуляторами являются свинцово-кислотные. Оптовая цена этих далеко не самых экологичных систем, порядка 0,08 доллара за Вт*ч. Свинцово-кислотные аккумуляторы также, как и литевые, рассчитаны на 3-6 лет работы. КПД свинцового аккумулятора составляет 75 %. Четвертую часть своей энергии этот аккумулятор теряет в цикле заряд-разряд. Чтобы сохранить дневную выработку солнечной энергии понадобится приобрести свинцово-кислотные аккумуляторы на 0.64 доллара. Мы видим, что это также больше, чем стоимость самих батарей.
Для современных СЭС разработаны гидроаккумулирующие электростанции. В течение светового дня в них закачивается вода, а ночью они функционируют как обычные гидроэлектростанции. Но строительство этих электростанций (КПД 90 %) не всегда возможно и чрезвычайно дорого.
Мы можем сделать неутешительный вывод. На сегодняшний день аккумуляторы обходятся дороже, чем сами СЭС. Для крупных солнечных электростанций они не предусмотрены. По мере генерации электроэнергии, крупные солнечные электростанции продают ее в распределительные сети. В вечернее и ночное время электроэнергию вырабатывают обычные электростанции.

Энергия солнца - какова сегодня ее цена?
Возьмем, к примеру, Германию – мирового лидера в использовании солнечной энергетики. Киловатт солнечной энергии, которая генерируется (даже в дневные часы, а ведь такая электроэнергия дешевле), выкупается в этой стране по цене от 12 до 17,45 евроцентов за кВт*ч. Поскольку газовые электростанции в Германии по прежнему строятся, функционируют или находятся в горячем резерве, солнечные электростанции в этой стране фактически просто помогают экономить российский газ.
Стоимость российского газа на сегодняшний день – 450 долларов за тысячу кубометров. Из этого объема газа (КПД генерации 40%) можно выработать приблизительно 4.32 ГВт электроэнергии. Следовательно, на 1 кВт*ч электричества выработанного от солнца, российского газа экономится на сумму в 0,104 доллара или 7,87 евроцента. Вот справедливая стоимость солнечной нерегулируемой генерации. Таким образом, в настоящее время в Германии солнечная энергетика на 50 % дотируется государством. Хотя, необходимо отметить, что Германия стремительно снижает стоимость генерации электроэнергии от солнца.

Делаем выводы
Самое экономичное солнечное электричество (0,5 долларов за 1 Ватт) получают сегодня с помощью солнечных поликристаллических батарей. Все остальные способы получения электричества с помощью энергии солнца, на порядок дороже.
Проблема, которая является ключевой для солнечной энергетики, это все же не КПД солнечных батарей, не цены, и не EROEI, который теоретически бесконечен. Главная проблема заключается в удешевлении способов генерации энергии солнца, полученной в дневные часы и сбережения этой энергии для вечернего пикового потребления. Ведь в настоящее время аккумуляторные системы, срок службы которых от трех до шести лет, в разы дороже самих солнечных батарей.
Солнечная генерация в значительных масштабах рассматривается сегодня только в виде способа экономии небольшой части традиционного ископаемого топлива в дневное время. Солнечная энергетика пока не в силах полностью взять на себя нагрузку в вечерние пиковые часы энергопотребления и уменьшить число АЭС, угольных, газовых и гидроэлектростанций, которые в дневные часы должны стоять в резерве, а в вечерние, брать на себя значительную энергетическую нагрузку.
Если в результате ужесточения тарифов (при которых, например, производителям водорода и алюминия будет выгодно запускать свое электролизное производство в дневные часы) пик потребления электроэнергии сместится на дневные часы, то у энергии солнца появятся более серьезные перспективы для развития.
Стоимость солнечной генерации, которая является «нерегулируемой», несопоставима со стоимостью генерации электроэнергии на привычных электростанциях, которые могут свободно генерировать ее в любое время, когда в этом есть необходимость.
Стоимость солнечной электроэнергии не должна превышать стоимости ископаемого топлива, сэкономленного с ее помощью. Если, например, газ в Германии стоит 450 долларов, то цена солнечной генерации в этой стране не должна превышать 0,1 доллара за киловатт час, в противном случае солнечная энергетика в этой стране является убыточной. До тех пор пока ископаемое топливо будет оставаться дешевым и легкодоступным, генерация солнечной энергии является невыгодной с экономической точки зрения.
В настоящее время использование энергии солнца и дорогостоящих солнечных аккумуляторных систем является экономически оправданным только для тех регионов и объектов, где нет других возможностей подключения к электросетям. Например, на одиноко стоящей, отдаленной станции сотовой связи.
Однако, не стоит забывать следующих важных факторов, которые вселяют оптимизм при рассмотрении солнечной энергетики:
1. Стоимость ископаемого топлива неуклонно растет по мере уменьшения его запасов.
2. Разумная государственная политика делает использование солнечных электростанций выгоднее.
3. Прогресс не стоит на месте! КПД солнечных электростанций повышается, разрабатываются новые технологии в генерировании и аккумулировании электроэнергии.

Поэтому, хочется верить, через 3-5 лет можно будет написать гораздо более позитивный обзор этой отрасли энергетики!

Энергия солнца используется в качестве источника как электрической, так и тепловой энергии. Она экологически чиста, и в процессе ее преобразования не образуется вредных выбросов. Этот относительно новый способ производства электроэнергии получил бурное развитие в середине 2000-х годов, когда страны ЕС стали внедрять политику снижения зависимости от углеводородов в сфере производства электроэнергии. Еще одной целью было снижение выбросов в атмосферу парниковых газов. Именно в эти годы стоимость производства солнечных панелей стала снижаться, а их эффективность – возрастать.

Наиболее благоприятствуют, по длительности светового дня и поступлению солнечных лучей в течение года, тропические и субтропические климатические пояса. В умеренных широтах наиболее благоприятен летний сезон, а что касается экваториальной зоны, то в ней отрицательным фактором является облачность в середине светового дня.

Может осуществляться посредством промежуточного теплового процесса или напрямую - посредством . Фотоэлектрические станции подают электроэнергию прямо в сеть, либо служат источником автономного электроснабжения потребителя. Тепловые же солнечные станции главным образом применяются для получения тепловой энергии путем обогрева различных теплоносителей, таких как вода и воздух.


По состоянию на 2011 год, на всех солнечных электростанциях мира было произведено 61,2 млрд. киловатт-часов электроэнергии, что соответствует 0,28% общего мирового объема произведенной электроэнергии. Этот объем сравним с половиной показателя генерации электроэнергии на ГЭС в России. Главным образом мощности фотоэлектрических станций в мире сосредоточены в небольшом количестве стран: в 2012 году 7 стран-лидеров обладали 80% суммарных мощностей. Самое стремительное развитие отрасль получила в Европе, где было сосредоточено 68% мировых установленных мощностей. На первом месте Германия, на которую приходится (2012 год) около 33% мировых мощностей, далее идут Италия, Испания и Франция.

В 2012 году установленная мощность солнечных фотоэлектрических станций во всем мире составила 100,1 ГВт, что меньше 2% суммарного показателя по мировой электроэнергетике. В период с 2007 по 2012 годы этот объем вырос в 10 раз.


В Китае, США и Японии располагались мощности солнечной энергетики по 7-10 ГВт. В течение нескольких последних лет особенно быстро солнечная энергетика развивается в Китае, где общая мощность фотоэлектрических станций страны выросла в 10 раз за 2 года - от 0,8 ГВт в 2010 году до 8,3 ГВт в 2012 году. Сейчас на Японию и Китай приходится 50% мирового рынка солнечной энергетики. Намерения Китая - получить в 2015 году 35 ГВт электроэнергии от солнечных установок. Это вызвано все растущими потребностями в энергии, а также необходимостью борьбы за чистоту экологии, которая страдает от сжигания ископаемого топлива.

По прогнозам Японской Ассоциации фотоэлектрической энергии, к 2030 году суммарная мощность солнечных станций Японии достигнет 100 ГВт.

В планах Индии – увеличение, в среднесрочной перспективе, мощности солнечных установок в 10 раз, то есть от 2 ГВт до 20 ГВт. Стоимость солнечной энергии в Индии уже достигла уровня 100 долларов за 1 Мегаватт, что сравнимо с энергией, получаемой в стране из импортного угля или газа.

Лишь 30 процентов территории Африки, расположенной к югу от Сахары, имеют доступ к . Там развиваются автономные солнечные установки и микро-сети. Африка, как регион с мощной добывающей промышленностью, таким путем рассчитывает получить альтернативу дизельным электростанциям, а также надежный резервный источник для ненадежных электросетей.


В России сейчас идет период становления солнечной энергетики. Первая фотоэлектрическая станция мощностью 100 кВт, расположенная на территории Белгородской области, была запущена в 2010 году. Солнечные поликристаллические панели для нее закупались на Рязанском заводе металлокерамических приборов. В Республике Алтай с 2014 года началось строительство солнечной электростанции мощностью 5МВт. Рассматриваются и другие возможные проекты в этой сфере, в том числе в Приморском и Ставропольском краях, а также в Челябинской области.

Что касается солнечной тепловой энергетики, то по данным Renewable Energy Policy Network for the 21st Century, в 2012 году ее мировые установленные мощности составляли 255 ГВт. Большая часть этих тепловых мощностей приходится на Китай. В структуре таких мощностей основную роль играют станции, нацеленные непосредственно на обогрев воды и воздуха.

Исследование выполнено при поддержке Российского научного фонда (РНФ), его результаты опубликованы в международном журнале Frontiers in Chemistry. Подробнее .

В Ульяновской области построят завод по производству солнечных панелей

В январе во время рабочего визита в Китай делегация с губернатором Ульяновской области посетила предприятие технологического партнера австрийской компании Green Source для ознакомления с продукцией компании и обсуждения предстоящего строительства завода по производству солнечных панелей на территории Ульяновской области. Договоренность о строительстве такого завода была достигнута с австрийскими компаниями еще в прошлом году.

"В конце 2018 года мы договорились с австрийскими компаниями о строительстве в Ульяновской области предприятия по производству фотоэлектрических модулей для солнечных электростанций с использованием перспективной технологии", - сообщил губернатор Морозов 19 января на своей странице в фейсбуке.

2018

Четыре солнечные электростанции мощностью 100 МВт будут работать в Бурятии к 2022 году

Четыре солнечные электростанции (СЭС) общей мощностью 100 МВт будут работать в Бурятии к 2022 году. Об этом сообщил в понедельник и.о. министра по развитию транспорта, энергетики и дорожного хозяйства Алексей Назимов, выступая на заседании Совета по науке при главе Бурятии Алексее Цыденове .

Владельцам солнечных батарей на домах разрешат продавать электричество

Выкупать электроэнергию обяжут местные сбытовые компании по средней цене, пояснили в пресс-службе министерства. Ориентиром станет стоимость энергии у местных крупных электростанций. Владельцам частных домов в районах, не имеющих доступа к единой электросети России или же не включенных в ценовые зоны европейской части РФ и Урала с Сибирью (к примеру, Калининградская область и Дальний Восток) ее разрешат продавать по регулируемому ФАС тарифу. Претендовать на гарантированный выкуп энергии смогут установки не мощнее 15 кВт.

Не исключено, что владельцам ветряков и солнечных панелей в частных домах также установят налоговые льготы. Их доход от продажи лишней электроэнергии в размере до 150 тыс. руб. в год могут освободить от НДФЛ. Соответствующий вопрос рассматривается в правительстве.

Т Плюс начинает строительство крупнейших в России солнечных станций

- Развитие "зеленой" энергетики – ключевое направление работы Правительства области по освоению альтернативных видов топлива и сохранению окружающей среды. В области уже работают пять солнечных электростанций. Крупнейшая из них построена в Орске компанией "Т Плюс". С пуском второй очереди ее мощность возросла до 40 мегаватт. Солнечные электростанции действуют в Переволоцком, Грачевском, Красногвардейском, Соль-Илецком районах, – сказал Юрий Берг. – Сегодня мы делаем важный шаг вперед – начинаем строительство еще двух объектов альтернативной энергетики. Наша задача – укрепить передовые позиции Оренбургской области в развитии альтернативной энергетики. Мы эту задачу выполним, и к 2020 году мощность всех солнечных электростанций Оренбуржья составит более 200 мегаватт. Сегодня экологический аспект приобретает решающее значение для определения качества и уровня комфортности жизни человека. Это является приоритетом президентской политики. Развитие альтернативной энергетики – это взгляд в будущее, – констатировал глава региона.

2017

Итоги развития солнечной энергетики за год

Первый заместитель Министра энергетики РФ Текслер Алексей Леонидович выступил в январе 2018 года на министерском круглом столе "Инновации для трансформации энергетики: как электротранспорт/электромобили изменяют энергосистему", который прошел в рамках восьмого заседания Ассамблеи IRENA.

Алексей Текслер рассказал участникам дискуссии о развитии ВИЭ в России . По его словам, совсем недавно в России, кроме большой гидроэнергетики, не было компетенций в сфере ВИЭ и за несколько лет был сделан большой шаг вперед .

"Главный итог 2017 года, который я готов констатировать – возобновляемая энергетика в России состоялась как отрасль", - подчеркнул замглавы.

Практически с нуля в России создана своя индустрия в солнечной энергетике, от исследований до производства солнечных панелей и строительства генерирующих станций. За 2017 год было построено больше мощностей возобновляемых источников энергии, чем за предыдущие два года. В 2015-2016 годах в России были введены 130 МВт ВИЭ, а в 2017 году построено 140 МВт, из них более 100 МВт солнечные электростанции, а 35 МВт – первый крупный ветропарк , запуск которого состоится в ближайшее время.

В числе ключевых достижений Первый заместитель Министра энергетики отметил также запуск производства солнечных панелей нового поколения на основе отечественной гетероструктурной технологии. Россия стала производить модули с КПД выше 22%, которые по этому показателю входят в мировую тройку лидеров по эффективности в серийном производстве. В этом году планируется увеличить мощность производства завода со 160 МВт до 250 МВт.

Алексей Текслер выразил уверенность в том, что, как и в солнечной энергетике, в ближайшие три года будет создана индустрия ветровой энергетики . Уже за 2016-2017 гг. в российскую ветроэнергетику пришли крупные российские и иностранные инвесторы, которые взяли обязательства по развитию технологической и производственной базы в России.

В Башкортостане введена в эксплуатацию Исянгуловская солнечная электростанция

В Зианчуринском районе Республики Башкортостан осенью 2017 года введена в эксплуатацию Исянгуловская солнечная электростанция (СЭС) мощностью 9 МВт.

Инвестором и генеральным подрядчиком проекта выступают структуры группы компаний "Хевел " (совместное предприятие Группы компаний "Ренова " и АО РОСНАНО). К строительству также были привлечены местные подрядные организации. После завершения всех регламентных процедур станция начнет плановые поставки электроэнергии в сеть. Инвестиции в строительство станции составили более 1,5 млрд рублей.

В 2015-2016 гг. в Республике Башкортостан были построены и введены в эксплуатацию Бугульчанская СЭС общей мощностью 15 МВт, а также Бурибаевская СЭС мощностью 20 МВт. С момента выхода на оптовый рынок электроэнергии и мощности станции выработали более 40 ГВт*ч чистой электроэнергии.

С вводом Исянгуловской СЭС установленная мощность солнечной генерации в регионе достигла 44 МВт. Новый объект стал третьим из пяти, которые "Хевел" планирует построить в Башкортостане в ближайшие годы. Суммарная мощность всех СЭС в регионе составит 64 МВт, а общий объём инвестиций оценивается более чем в 6 млрд рублей.

Ученые нашли способ повышения эффективности солнечных батарей

Российские и швейцарские сследователи изучили влияние на структуру и производительность солнечных батарей изменения соотношения компонентов, из которых формируется светопоглощающий слой перовскитной солнечной ячейки. Результаты работы опубликованы в журнале Journal of Physical Chemistry C .

Впервые органо-неорганические перовскиты были разработали пять лет назад, но по КПД они уже обогнали наиболее распространенные и более дорогие кремниевые солнечные элементы. В структуре перовскитов находятся кристаллические соединения, в котором располагаются молекулы растворителя исходных компонентов. Растворенные компоненты, выпадая из раствора, образуют пленку, на которой растут кристаллы перовскита. Ученые выделили и описали три промежуточных соединения, которые являются кристаллосольватами одного из двух растворителей, наиболее часто используемых при создании перовскитных солнечных батарей. Для двух соединений ученые впервые установили кристаллическую структуру.

«Мы выяснили, что ключевым фактором, определяющим функциональные свойства перовскитного слоя, является образование промежуточных соединений, поскольку кристаллиты перовскита наследуют форму промежуточных соединений. Это, в свою очередь, влияет на морфологию пленки и эффективность солнечных батарей. Это особенно важно при получении тонких пленок перовскита, поскольку игольчатая или нитевидная форма кристаллов приведет к тому, что образованная пленка будет несплошной, а это значительно снизит КПД такой солнечной ячейки», - отметил руководитель исследования Алексей Тарасов.

Дополнительно авторы исследовали термическую стабильность полученных соединений и с помощью квантово-химического моделирования рассчитали энергию их образования. Также авторы выяснили, что кристаллическая структура промежуточного соединения задает форму образующихся кристаллов перовскита, что определяет структуру светопоглощающего слоя. Эта структура, в свою очередь, влияет на производительность получаемой солнечной батареи.

Исследование было проведено научными сотрудниками МГУ в сотрудничестве с учеными Курчатовского центра синхротронного излучения, Российского университета дружбы народов , СПбГУ и Федеральной политехнической школы Лозанны в Швейцарии .

Завод Вексельберга начинает выпуск солнечных батарей на экспорт

«Хевел» в Оренбургской и Астраханской областях

В октябре губернатор Астраханской области Александр Жилкин и генеральный директор ГК «Хевел» Шахрай Игорь подписали двухстороннее соглашение, предусматривающее постройку и введение в эксплуатацию трёх сетевых солнечных электростанций.

В течение двух лет на территории региона появятся мощности для выработки 135 МВт энергии с перспективами увеличения до 160 МВт. Инвестиционная стоимость проекта – 15 млрд рублей. Планируется, что уже к концу года одну электростанцию достроят и введут в эксплуатацию. СЭС принесут в казну области дополнительные налоговые поступления. По словам Игоря Шахрая, за каждые 10 МВт энергии в год будет отчисляться 100 млн рублей налогов. Гендиректор ООО «Хевел» отметил, что астраханская земля – самая солнечная на юге России . Кроме того, в регионе имеется наработанная схема для подключения к основным энергосетям. В дополнение к этому власти всячески поддерживают и стремятся развивать направление чистой энергетики в области. Всего до конца года в регионе будут введены 6 СЭС суммарной мощностью 90 МВт.

2015 год

Мировая солнечная энергетика вплотную подходит к той стадии, когда производство электроэнергии с помощью Солнца начинает окупаться обычным, не повышенным тарифом, стоимость материалов и величина необходимых инвестиций резко падают, так как технологии развиваются и начинает сказываться эффект объема (много производить дешевле, чем мало). В сравнении с 2014 годом объем выработанной энергии на основе СЭС в мире вырос на треть. На конец 2015 года совокупная установленная мощность фотоэлектрических солнечных установок в мире составила 227 ГВт, за год установленные мощности солнечных электростанций увеличились в 2 раза. Если раньше мировым лидером по развитию возобновляемой энергетики была Европа , то в прошлом году пальму первенства перехватил Китай .

SoftBank построит в Саудовской Аравии крупнейшую солнечную электростанцию

Соответствующий меморандум о намерениях подписали в Нью-Йорке наследный принц Саудовской Аравии Мухаммед бин Сальман Аль Сауд и генеральный директор SoftBank Масаеши Сон. Принц находится в с трехнедельным официальным визитом, отмечает телеканал.

Планируемая мощность каскада солнечных батарей в 200 ГВт - это в разы больше, чем у любой существующей солнечной электростанции. Для сравнения, пиковая мощность расположенной в Калифорнии Topaz Solar Farm, одной из крупнейших подобных электростанций, составляет около 550 МВт. Энергию там аккумулируют 9 млн тонкослойных фотоэлектрических модулей.

Голландский стартап Oceans of Energy, специализирующийся на разработке плавучих систем по производству возобновляемой электроэнергии, объединился с пятью крупными компаниями, чтобы построить первую в мире солнечную электростанцию, дрейфующую в открытом море. "Такие электростанции уже работают на водоемах в материковой части разных стран. Но на море их никто не строил - это чрезвычайно трудная задача. Приходится иметь дело с огромными волнами и другими разрушительными силами природы. Однако, мы убеждены, что объединив свои знания и опыт, справимся с этим проектом", - рассказал глава Oceans of Energy Аллард ван Хоекен.
По предварительным расчетам, плавучая электростанция будет на 15% эффективнее существующих установок. Выбирать наиболее подходящие солнечные модули будет Центр исследований энергетики Нидерландов (ECN). Его специалисты считают, что это для проекта можно использовать стандартные солнечные панели, которые работают и на наземных солнечных станциях. "Посмотрим, как они поведут себя в морской воде и в неблагоприятных погодных условиях", - отметил представитель ECN Ян Кроон.

Представители консорциума подчеркивают, что плавучую солнечную электростанцию можно установить прямо между морскими ветровыми турбинами. Там более спокойные волны и уже проведены все линии электропередачи. В ближайшие три года консорциум будет работать над прототипом при финансовой поддержке государственного Агентства предпринимательства Нидерландов. А Утрехтский университет предоставит стартапу материалы своих исследований.

Стоимость солнечной энергии в Австралии упала на 44% с 2012 года

Такое увлечение возобновляемой энергии привело к тому, что люди действительно начали платить меньше за электричество. Плюсом к этому также стало то, что стоимость самой электроэнергии снизилась. С 2012 года издержки на установку и эксплуатацию солнечных панелей упали почти на половину.

В 2017 году в стране частные домовладельцы и бизнес установили панелей суммарной мощностью 1,05 ГВт. Такую оценку дает ведомство, отвечающее за вопросы чистой энергетики в стране. Власти говорят, что это рекордный показатель за всю историю. Сообщается, что в начале этого десятилетия рост возобновляемой энергетики был связан с выгодными субсидиями и налоговыми предложениями, но рост 2017 отличается: жители страны решили таким образом бороться с повышающимися тарифами на электроэнергию, и движение стало массовым.

По прогнозам BNEF, Австралия станет мировым лидером по внедрению солнечных панелей. К 2040 году 25% потребности страны в электроэнергии будет покрываться солнечными панелями на крышах. Это станет возможным из-за того, что сегодня срок окупаемости таких решений сократился до минимального с 2012 года. Пока это не значит, что традиционные электростанции Австралии уходят в прошлое, но люди становятся свободнее в вопросах обеспечения себя электроэнергией.

2017

Южная Корея в 5 раз увеличит солнечную генерацию к 2030 году

Министр торговли, промышленности и энергетики Южной Кореи обнародовал план правительства по пятикратному увеличению выработки солнечной энергии к 2030 году .

Это заявление было сделано вскоре после того, как избранный в этом году президент Мун Чжэ Ин пообещал прекратить государственную поддержку строительства новых атомных электростанций и взять курс на экологически чистые источники электроэнергии. Правительство уже отменило строительство шести ядерных реакторов в Южной Корее.

Всего страна планирует получать к 2030 пятую часть вырабатываемого электричества из возобновляемых источников. В прошлом году этот показатель составлял 7%. Для этого к назначенному сроку планируется добавить 30,8 ГВт солнечных мощностей и 16,5 ГВ ветровых. Дополнительная энергия будет поступать из крупнейших проектов, а также от частных домохозяйств и малого бизнеса, заявил министр Пайк Унгю. "Мы фундаментально изменим путь развития возобновляемой энергетики, создав условия, при которых граждане легко смогут принять участие в торговле возобновляемой энергией", - сказал он.

Это значит, что к 2022 году примерно 1 из 30 домохозяйств должно быть оборудовано солнечными панелями, сообщает Clean Technica.

Тем не менее, пока Южная Корея занимает пятое место в мире по использованию атомной энергии. В стране 24 действующих реактора, обеспечивающих приблизительно треть потребностей страны в электричестве.

BP инвестировала $200 млн в солнечную энергетику

Пустыня Атакама в Чили- одно из самых солнечных и сухих мест на планете. Логично, что именно там решили построить крупнейшую в Латинской Америке солнечную электростанцию El Romero. Гигантские солнечные панели покрывают 280 га площади. Ее пиковая мощность - 246 МВт, а в год электростанция генерирует 493 ГВт-ч энергии - достаточно, чтобы обеспечить электричеством 240 000 домов.

Удивительно, но всего пять лет назад в Чили почти не использовали возобновляемые источники энергии. Страна была зависима от соседей-поставщиков энергоносителей, которые завышали цены и заставляли чилийцев страдать от непомерных счетов за электричество. Однако, именно отсутствие ископаемого топливо привело к серьезному потоку инвестиций в возобновляемые источники, особенно в солнечную энергетику.

Сейчас Чили производит практически самую дешевую солнечную энергию в мире. Компании надеются, что страна станет "Саудовской Аравией для Латинской Америки". Чили уже присоединился к Мексике и Бразилии в первой десятке стран-производителей возобновляемой энергетики, и теперь собирается стать лидером при переходе на "чистую" энергию в Латинской Америке.

"Правительство Мишель Бачелет совершило тихую революцию, - уверен социолог Еугенио Тирони. - Ее заслугу в переходе на возобновляемые источники энергии трудно переоценить, и это определит фактор развития страны на долгие годы".

Теперь, когда олигополистический рынок энергетики в Чили открыт для конкурентной борьбы, правительство поставило новую цель: к 2025 году 20% всей энергии страны должно поступать из возобновляемых источников. А к 2040 году Чили собирается полностью перейти на "чистую" энергетику. Даже экспертам это не кажется утопией, поскольку солнечные электростанции страны при ныне существующих технологиях производят в два раза более дешевое электричество, чем угольные электростанции. Цены на солнечную энергию упали на 75%, достигнув рекордных 2,148 центов за киловатт-час.

Компании-производители сталкиваются с другой проблемой: слишком дешевое электричество не приносит особой прибыли, а содержание и замена солнечных панелей стоит недешево. "Правительству придется строить долгосрочные стратегии, чтобы чудо не стало кошмаром", - заявил генеральный директор испанского конгломерата Acciona Хосе Игнасио Эскобар.

Google полностью переходит на солнечную и ветровую энергию

Компания стала крупнейшим в мире корпоративным покупателем возобновляемой энергии, достигнув суммарной мощности 3 ГВт. Общие инвестиции Google в сферу чистой энергетики достигли $3,5 млрд, пишет в ноябре 2017 года Electrek .

Google официально переходит на стопроцентное использование солнечной и ветряной энергии. Компания подписала контракт с тремя ветровыми электростанциями: Avangrid в Южной Дакоте, EDF в Айове и GRDA в Оклахоме, суммарная мощность которых составляет 535 МВт. Теперь офисы Google по всему миру будут потреблять 3 ГВт возобновляемой энергии.

Общие инвестиции компании в сферу энергетики достигли $3,5 млрд, и 2/3 из них приходится на объекты в . Такой интерес к "чистым" источникам связан, в первую очередь, с падением стоимости солнечной и ветряной энергии на 60-80% за последние годы.

Впервые Google подписал договор о сотрудничестве с солнечной фермой в Айове мощностью 114 МВт еще в 2010 году. К ноябрю 2016 года компания уже была участником 20 проектов по возобновляемой энергетике. Полностью перейти на энергию солнца и ветра она собиралась еще в декабре 2016 года. Сейчас Google самый крупный в мире корпоративный покупатель возобновляемой энергии.

В Швеции изобрели умные стекла для окон

Ученые давно исследуют данную область и ищут применение разработке. В современном мире такая технология актуальна, так как теплопотери домов из-за окон составляют примерно 20%. Ученые считают, что их изобретение сможет также применяться для теплоизоляции различных объектов.

В Иране деревни продают электроэнергию государству

На осень 2017 года «зеленых» деревень в ИРИ более 200. Ожидается, что к весне 2018 года их число достигнет 300. "Иран сегодня сообщает", что в некоторых населенных пунктах страны солнечные батареи стоят уже десять лет. Отмечается, что самые большие объемы энергии из солнца производят в провинциях Керман, Хузестан и Лурестан .

Изначально появление альтернативных источников энергии в деревнях Ирана обуславливалось невозможностью доставки в них электричества из городов. Теперь собственную энергию они продают Министерству энергетики ИРИ. Планируется выработать законодательные нормы, согласно которым закупки электроэнергии в деревнях станут постоянными.

К 2030 году Иран рассчитывает производить 7500 МВт «зеленой» энергии, сегодня этот показатель всего 350 МВт. Однако у страны есть хорошие перспективы для развития солнечной энергетики, потому что на 2/3 территории солнце светит 300 дней в году.

Британские ученые изобрели стеклянные кирпичи с солнечными батареям

Группа ученых Эксетерского университета в Англии разработала стеновые блоки из стекла со встроенными солнечными батареями. Об этом пишет архитектурный портал Archdaily. Блоки можно использовать при строительстве домов вместо обычных кирпичей.

Стройматериал назвали «Solar Squared» («Солнечная квадратная плитка»). Как показали тесты в лаборатории университета, помимо генерации электроэнергии блоки обладают и рядом других полезных свойств. В частности, построенные таким образом стены хорошо пропускают в здание солнечный свет и сохраняют тепло в помещениях.

Для продвижения продукта ученые создали инновационную компанию The Build Solar. В настоящее время ведется поиск инвесторов. Вывод «солнечной плитки» на рынок предварительно запланирован на 2018 год.

В Дубае запустили крупнейшую в мире солнечной электростанции

Установка каждой гелиопанели обошлась в 6 тыс. евро, включая аренду на год, ремонт и техническое оборудование. Планируется, что солнечные батареи будут работать на остановках общественного транспорта около года, после чего будут переданы школам и детсадам.

По словам Петра Свитальского, главы делегации ЕС в Армении, Евросоюз заинтересован в развитии альтернативной энергетики в стране. Остановку с гелиопанелями он назвал «солнечной остановкой Евросоюза ».

Использование энергии Солнца на Земле краткий доклад, расскажет Вам о возможностях ее применения с пользой для человека.

Использование Солнечной энергии на Земле

Солнце представляет собой светящийся огромный газовый шар, в котором протекают достаточно сложные процессы и постоянно выделяется энергия. Благодаря ей существует жизнь на нашей планете: нагревается атмосфера и поверхность планеты, дуют ветра, нагреваются океаны и моря, произрастают растения и так далее.

Солнечная энергия способствует образованию ископаемым видам топлива, преобразовывается в теплоту и холод, электричество и движущую силу. Светило испаряет воду, влагу превращает в водные капли, образует туманы и облака. Одним словом, энергия Солнца создает гигантский круговорот влаги на планете, систему воздушного и водяного отопления планеты.

Когда солнечный свет попадает на растения, то вызывает у них процесс фотосинтеза, рост и развитие. Прогревая почву, он формирует ее климат, давая жизненную силу микроорганизмам, семенам растений и все существам, которые населяют почву. Без солнечной энергии живые организмы были бы в состоянии спячки (анабиоза).

Примеры использования солнечной энергии в народном хозяйстве

Солнечная энергия — это восстанавливаемый естественным путем источник энергии и, что важно, экологически безопасный. Ученые со всего мира работают над расширением возможности ее использования. Во многих странах созданы государственные программы для разработки технологий применения солнечной энергии.

Наибольшее потребление солнечной энергии наблюдается в Турции и Израиле. А рекордное число оборудованных домов системой солнечного нагрева воды находится на Кипре.

В сельскохозяйственной деятельности, а именно в агропромышленном комплексе, также применяется солнечная энергия. Планируется внедрить ее во все отрасли народного хозяйства. Свободные площади стен и крыш домов, хозяйственных построек позволяют накапливать достаточные количества электроэнергии, причем бесплатной. Фотоэлектрические системы можно применять для работы электропастуха на выпасах, насосов, электроножей, медогонок на пасеке, для обеспечения жилых зданий электричеством.

Воздушные коллекторы, работающие на солнечной энергии, создают среду для проживания людей и сельскохозяйственных животных, а также поддерживают показатели влажности и температуры на одном, заданном уровне.

Теплицы и парники, оборудованные гелиопанелями, накапливают и сохраняют тепло, обеспечивая микроклимат для растений.

Устройства на основе солнечной энергии применяются для проветривания и отопления овоще- и зернохранилищ, поддерживая заданные параметры человеком.

Надеемся, что «Использование энергии Солнца» реферат помог Вам подготовиться к занятию. А свое сообщение о солнечной энергии Вы можете оставить через форму комментариев ниже.

Издавна люди говорили о Солнце как о могучем и великом, возвышая его в своих религиях до одушевленного объекта. Светилу поклонялись, ему возносили хвалу, им мерили время и всегда считали его первоисточником земных благ.

Необходимость в солнечной энергии

Прошли тысячелетия. Человечество вступило в новую эру своего развития и пользуется плодами бурно развивающегося технологического прогресса. Однако и по сегодняшний день именно Солнце представляет собой основной природный источник тепла, а, следовательно, и жизни.

Как человечество использует Солнце в повседневной своей деятельности? Рассмотрим этот вопрос подробнее.

«Работа» Солнца

Небесное светило служит единственным источником той энергии, которая нужна для проведения фотосинтеза растений. Солнце приводит в движение круговорот воды, и только благодаря ему на нашей планете имеются все известные человечеству ископаемые виды топлива. И еще люди пользуются силой этой яркой звезды для того, чтобы обеспечить свои потребности в электрической и тепловой энергии. Без этого жизнь на планете была бы просто невозможна.

Основной источник энергии

Природа мудро заботится о том, чтобы человечество получало от небесного светила его дары. Доставка к Земле солнечной энергии осуществляется путем передачи радиационных волн на поверхность материков и вод. Причем до нас из всего посылаемого спектра доходят только:

1. Ультрафиолетовые волны. Они невидимы для человеческого глаза и составляют примерно 2% в общем спектре.

2. Световые волны. Это примерно половина энергии Солнца, которая достигает поверхности Земли. Благодаря световым волнам человек видит все краски окружающего его мира.

3. Инфракрасные волны. Они составляют примерно 49% спектра и нагревают поверхность воды и суши. Именно эти волны и являются наиболее востребованными в вопросах использования энергии Солнца на Земле.

Принцип преобразования инфракрасных волн

Каким образом происходит процесс использования энергии Солнца на Земле? Как и любое другое подобное действие, он осуществляется по принципу прямого превращения. Для этого нужна только специальная поверхность. Попадая на нее, солнечный свет проходит процесс превращения в энергию. Для получения тепла в этой схеме должен быть задействован коллектор. Он поглощает инфракрасные волны. Далее в устройстве, использующем энергию Солнца, непременно присутствуют накопители. Для нагревания конечного продукта устраивают специальные теплообменники.

Цель, которую преследует солнечная энергетика, - получение столь необходимого для человечества тепла и света. Новую отрасль порой называют гелиоэнергетикой. Ведь Helios в переводе с греческого - Солнце.

Работа комплекса

Теоретически каждый из нас может произвести расчет солнечной установки. Ведь известно, что, пройдя путь от единственной звезды нашей галактической системы до Земли, поток световых лучей принесет с собой энергетический заряд, равный 1367 Вт на квадратный метр. Это так называемая солнечная постоянная, которая существует на входе в атмосферные слои. Такой вариант возможен только при идеальных условиях, которых в природе просто не существует. После прохождения атмосферы солнечные лучи принесут на экватор 1020 Вт на квадратный метр. Но из-за смены дневного и ночного времени суток мы сможем получить в три раза меньшее значение. Что касается умеренных широт, то здесь меняется не только длительность светового дня, но и сезонность. Таким образом, получение электроэнергии в местах, далеких от экватора, при расчете нужно будет уменьшить еще в два раза.

География излучений небесного Светила

Где может достаточно эффективно работать солнечная энергетика? Природные условия для размещения установок играют немаловажную роль в этой развивающейся отрасли.
Распределение солнечного излучения на поверхности Земли происходит неравномерно. В одних регионах луч Солнца - долгожданный и редкий гость, в других он способен угнетающе воздействовать на все живое.

То количество солнечного излучения, которое получает тот или иной район, зависит от широты его нахождения. Самые большие дозы энергии природного светила получают государства, находящиеся рядом с экватором. Но и это еще не все. Объем солнечного потока зависит от количества ясных дней, которые изменяются при переходе от одной климатической зоны к другой. Увеличить или уменьшить степень излучения способны воздушные потоки и прочие особенности региона. Преимущества энергии Солнца более всего знакомы:

Странам северо-восточной Африки и некоторым юго-западным и центральным областям континента;
- жителям Аравийского полуострова;
- восточному побережью Африки;
- северо-западной Австралии и некоторым островам Индонезии;
- западному побережью Южной Америки.

Что касается России, то, как показывают произведенные на ее территории замеры, наибольшим дозам солнечного излучения радуются районы, граничащие с Китаем, а также северные зоны. А где в нашей стране Солнце обогревает Землю меньше всего? Это северо-западный регион, в который входит Санкт-Петербург и прилегающие к нему области.

Электростанции

Сложно представить себе нашу жизнь без использования энергии Солнца на Земле. Как применить ее? Использовать лучи света можно для выработки электричества. Потребность в нем растет с каждым годом, а запасы газа, нефти и угля сокращаются стремительными темпами. Именно поэтому в последние десятилетия люди стали строить солнечные электростанции. Ведь эти установки позволяют использовать альтернативные источники энергии, значительно экономя природные ископаемые.

Солнечные электростанции работают благодаря встроенным в их поверхность фотоэлементам. Причем в последние годы удалось значительно повысить КПД работы таких систем. Солнечные установки стали выпускать из новейших материалов и с использованием креативных инженерных решений. Это значительно увеличило их мощность.

По мнению некоторых исследователей, уже в ближайшем будущем человечество может отказаться от существующих ныне традиционных путей получения электроэнергии. Потребности людей полностью удовлетворит небесное светило.

Солнечные электростанции могут иметь различные размеры. Самые небольшие из них - частные. В этих системах предусмотрено всего несколько солнечных панелей. Самые большие и сложные установки занимают площади, превышающие десять квадратных километров.

Все солнечные электростанции делят на шесть типов. Среди них:

Башенные;
- установки с фотоэлементами;
- тарельчатые;
- параболические;
- солнечно-вакуумные;
- смешанные.

Самым распространенным типом электростанции является башенный. Это высокая конструкция. Внешне она напоминает башню с расположенным на ней резервуаром. Емкость наполнена водой и выкрашена в черный цвет. Вокруг башни находятся зеркала, площадь которых превышает 8 квадратных метров. Вся эта система подключена к единому пульту управления, благодаря которому можно направлять угол наклона зеркал таким образом, чтобы они постоянно отражали солнечный свет. Лучи, направленные на резервуар, нагревают воду. Система выдает пар, который и направляется для выработки электроэнергии.

При работе электростанций фотоэлементного типа используются солнечные батареи. Сегодня подобные установки стали особенно популярными. Ведь солнечные батареи могут быть установлены небольшими блоками, что позволяет применять их не только для промышленных предприятий, но и для частных домов.

Если вы увидите целый ряд огромных по своему размеру спутниковых антенн, на внутренней стороне которых установлены зеркальные пластины, то знайте, что это параболические электростанции, работающие на излучении Солнца. Принцип их действия схож с такими же системами башенного типа. Они ловят пучок света и нагревают приемник с жидкостью. Далее вырабатывается пар, который и идет на производство электроэнергии.

Тарельчатые станции работают так же, как и те, которые относят к башенному и параболическому типу. Отличия кроются лишь в конструктивных особенностях установки. На первый взгляд она похожа на металлическое дерево огромных размеров, листьями которого являются плоские зеркала круглой формы. В них и концентрируется солнечная энергия.

Необычный способ получения тепла использован в солнечно-вакуумной электростанции. Ее конструкция представляет собой участок земли, накрытый круглой крышей. В центре этого сооружения возвышается полая башня, в основании которой и установлены турбины. Вращение лопастей такой электростанции происходит благодаря потоку воздуха, который возникает при разности температур. Стеклянная крыша пропускает лучи Солнца. Они нагревают землю. Температура воздуха внутри помещения повышается. Разность показаний столбиков термометров внутри и снаружи и создает воздушную тягу.

Солнечная энергетика задействует и электростанции смешанного типа. О таких системах можно говорить в тех случаях, когда, например, на башнях применяются дополнительные фотоэлементы.

Достоинства и недостатки солнечной энергетики

У каждой отрасли народного хозяйства есть свои положительные и отрицательные стороны. Имеются они и при использовании световых потоков. Плюсы солнечной энергетики заключены в следующем:

Экологичность, ведь она не загрязняет окружающую среду;
- доступность основных составляющих - фотоэлементов, которые реализуются не только для промышленного применения, но и для создания личных небольших электростанций;
- неисчерпаемость и самовосстанавливаемость источника;
- постоянно снижающаяся себестоимость.

Среди недостатков солнечной энергетики можно выделить:

Влияние времени суток и погодных условий на производительность электростанций;
- необходимость в аккумулировании энергии;
- снижение производительности в зависимости от широты, на которой расположен регион, и от времени года;
- большой нагрев воздуха, который имеет место на самой электростанции;
- потребность в периодической чистке от загрязнения, в которой нуждается система солнечных батарей, что проблематично в связи с огромными площадями, на которых установлены фотоэлементы;
- относительно высокая стоимость оборудования, которая хоть и снижается с каждым годом, но пока еще недоступна для массового потребителя.

Перспективы развития

Каковы дальнейшие возможности использования энергии Солнца на Земле? На сегодняшний день этому альтернативному комплексу пророчат большое будущее.

Перспективы солнечной энергетики радужны. Ведь уже сегодня в этом направлении идут огромные по своим масштабам работы. Каждый год в различных странах мира появляется все больше и больше солнечных электростанций, размеры которых поражают своими техническими решениями и масштабами. Кроме того, специалисты данной отрасли не прекращают проводить научные исследования, цель которых - многократное увеличение коэффициента полезного действия используемых на таких установках фотоэлементов.

Ученые произвели интересный расчет. Если на суше планеты Земля установить фотоэлементы, которые бы расположились на семи сотых ее территории, то они, даже имея КПД 10%, обеспечили бы все человечество необходимым ему теплом и светом. И это не столь уж далекая перспектива. Ведь фотоэлементы, которые используются на сегодняшний день, имеют КПД, равный 30%. При этом ученые надеются довести это значение до 85%.

Развитие солнечной энергетики идет достаточно высокими темпами. Люди серьезно озабочены проблемой истощения природных ресурсов и занимаются выявлением альтернативных источников тепла и света. Такое решение позволит предупредить неизбежный для человечества энергетический кризис, а также надвигающуюся экологическую катастрофу.

Поделиться: